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Continuous symmetry breaking in a 
trapped-ion spin chain

Lei Feng1,6 ✉, Or Katz1,6 ✉, Casey Haack2, Mohammad Maghrebi3, Alexey V. Gorshkov4, 
Zhexuan Gong2, Marko Cetina1 & Christopher Monroe1,5 ✉ 

One-dimensional systems exhibiting a continuous symmetry can host quantum 
phases of matter with true long-range order only in the presence of sufficiently 
long-range interactions1. In most physical systems, however, the interactions are 
short-ranged, hindering the emergence of such phases in one dimension. Here we use 
a one-dimensional trapped-ion quantum simulator to prepare states with long-range 
spin order that extends over the system size of up to 23 spins and is characteristic  
of the continuous symmetry-breaking phase of matter2,3. Our preparation relies on 
simultaneous control over an array of tightly focused individual addressing laser 
beams, generating long-range spin–spin interactions. We also observe a disordered 
phase with frustrated correlations. We further study the phases at different ranges of 
interaction and the out-of-equilibrium response to symmetry-breaking perturbations. 
This work opens an avenue to study new quantum phases and out-of-equilibrium 
dynamics in low-dimensional systems.

The exploration of new phases of matter has long been a frontier 
of physics. Quantum phases are particularly interesting, featuring 
non-local and macroscopic properties that have no classical coun-
terpart4. One-dimensional quantum systems have captured special 
attention because they can often be efficiently described using vari-
ous computational or analytic approaches2,5–7. The microscopic form 
and range of the interaction between constituent particles directly 
determine the macroscopic properties and phases that such systems 
can exhibit. Perhaps the best example is the Mermin–Wagner theorem1, 
which forbids low-dimensional short-range interacting systems with a 
continuous symmetry from exhibiting long-range order at any finite 
temperature.

One-dimensional systems with long-range interactions, by contrast, 
can manifest phases with long-range order2,3,8–17. A prime example is a 
chain of spin 1/2 particles featuring long-range ferromagnetic interac-
tions that have a continuous rotational U(1) symmetry. In the absence 
of magnetic fields, the chain can possess an exotic phase in which the 
spins exist in a superposition of collective states in the symmetry plane 
with no preferred orientation, and the spontaneous breaking of the 
continuous symmetry manifests in sizeable magnetic correlations 
across the entire chain2,3. Such a continuous symmetry-breaking (CSB) 
phase of matter has never been observed in a one-dimensional system.

Chains of trapped atomic ions are a pristine one-dimensional spin 
system, featuring high isolation from the environment, high-fidelity 
measurement and preparation of individual spins, and fully connected 
spin–spin interactions whose strength and range can be controlled 
by optical fields18–23. There have been proposals for observing CSB 
in trapped-ion systems2,3, requiring simultaneous control over each 
optical field addressing individual ions in a long and closely spaced 
crystal, which to date has been beyond experimental reach.

Here we report on continuous symmetry breaking in a one- 
dimensional trapped-ion quantum simulator. Using simultaneous 
individual control of a linear array of 23 optical beams addressing 
individual ions, we prepare the system in a CSB phase, manifesting 
long-range spin–spin correlations. Individual control over the spins 
enables the precise engineering and measurement of the interactions 
between spins as well as the study of non-equilibrium dynamics under 
symmetry-breaking perturbations. These results represent a frontier 
in the control of quantum phases and open new avenues in studying 
low-dimensional quantum systems.

The trapped-ion crystal under study comprises 27 171Yb+ ions con-
fined in a linear Paul trap on a chip24–26, as illustrated in Fig. 1a. A fluor-
escence image of the crystal is shown in Fig. 1b. Each ion stores an  
effective spin comprising two ‘clock’ levels in its electronic ground 
state ( F M↑ � ≡ = 1, = 0�z∣ ∣  and F M↓ � ≡ = 0, = 0�z∣ ∣ ) (ref. 27). We use a uni-
formly spaced array of tightly focused laser beams, together with an  
orthogonal wide global beam to simultaneously drive Raman transi-
tions between the spin states of individual ions. The Raman addressing 
is sensitive to the motion along the wavevector difference between the 
individual and global addressing Raman beams18. The electrostatic 
trapping potential is configured to align the middle 23 ions with the 
array of individual addressing beams. The two pairs of non-illuminated 
edge ions facilitate the alignment of the 23 middle ions. The spins are 
initialized and measured using optical pumping and state-dependent 
fluorescence techniques27 and the collective motional modes of the 
ion chain that mediate their interaction are cooled using sideband 
cooling28. Single-spin rotations enable the orientation of each spin 
along any axis on the Bloch sphere for initialization or measurement.

We deform the spin Hamiltonian as a function of time for different ini-
tial states to prepare different quantum phases of matter. Specifically, 
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we ramp down a staggered transverse-field Hamiltonian and ramp up 
an effective long-range XY Hamiltonian18 (Methods), so that the total 
time-dependent Hamiltonian is
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where s = s(t) is a time-dependent parameter changing from 0 to 1 dur-
ing the time interval from t = 0 to t = T and ̂σ j( ) are the Pauli operators 
of the j-th ion. Here hj = (−1)jh is a uniform-magnitude magnetic 
field with amplitude h that alternates between adjacent spins. Each 
interaction amplitude Jij is positive and describes the flip-flop rate 
between the i-th and j-th spins.

The simultaneous time-dependent control of the Raman beams ena-
bles the generation of the staggered-field Hamiltonian. This control also 
allows the selection of a subset of N spins in the middle of the crystal 
that can interact with one another while remaining decoupled from the 
rest of the spins in the crystal: switching off the beam addressing the 
n-th ion nulls its hopping amplitude Jin to all other ions i. The individual 
control also enables the experimental reconstruction of the interac-
tion matrix Jij, as shown in Fig. 1c for the first five nearest neighbours 
(∣i − j∣ ≤ 5). Here, the measured long-range interaction decreases slowly 
as a function of the interspin spacing, where the spatial inhomogeneity  
is determined by the structure of the applied trapping potential.  

The Hamiltonian evolution is also accompanied by decoherence 
induced by the optical drive (Methods).

To induce long-range correlations, we first initialize the spins in the 
Néel state in the z basis, corresponding to the highest excited state of 
the staggered-field Hamiltonian. We then ramp the Hamiltonian with 
the profile of s(t) shown in Fig. 2a. After the ramp, we immediately 
measure the transverse correlations C σ σ σ σ= +ij

i j i j
+
( )

−
( )

−
( )

+
( )̂ ̂ ̂ ̂ . The meas-

urements are performed simultaneously on all spins in the x and then 
in the y bases separately. To reduce statistical errors, each measurement 
is repeated 3,000 to 5,000 times, resulting in a 1σ binomial uncertainty 
0.007 to 0.010 for each correlation Cij. We first consider the time evo-
lution for a subset of N = 7 interacting spins (−3 ≤ i, j ≤ 3) shown in Fig. 2b. 
As the staggered field decreases and the interaction increases, correla-
tions develop between all the interacting spins in the x–y plane, indicat-
ing the CSB phase. On the other hand, when the spins are initialized in 
the ground state of the staggered-field Hamiltonian, shorter-range 
correlations develop in the x–y plane after evolving under the same 
ramp2,3. Figure  2c presents the formation of alternating and 
fast-decaying correlations between the N = 7 interacting spins, indicat-
ing a disordered phase2,3. We focus on the CSB phase and study the 
correlations at the end of the ramp for a different number of interact-
ing spins in the same ion chain, shown in Fig. 3a and Extended Data 
Fig. 8. Dark blue spheres indicate the set of interacting ions that are 
illuminated by the addressing beams. In all configurations, we observe 
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Fig. 1 | Trapped-ion crystal. a, Illustration of a one-dimensional crystal  
of 27 ions, confined in a linear Paul trap on a chip. A linear array of 23 tightly 
focused and individually controlled laser beams simultaneously generates 
site-dependent fields and a programmable interaction between the trapped-ion 
spins; an additional beam, propagating parallel to the trap surface, illuminates 
the entire ion chain from the side to facilitate these processes based on Raman 

transitions (not shown). b, Fluorescence image of a crystal composed of  
27 171Yb+ ions. c, Experimental reconstruction of the spin–spin interaction 
matrix Jij of the 23 spins between the five nearest neighbours. The bars are 
horizontally aligned with the ion crystal image in b, and the colours indicate the 
interaction between spins at different distances ∣i − j∣ (see Methods for the full 
modelled interaction).
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sizeable and positive correlations Cij between the interacting spins. To 
quantify the spatial dependence of the long-range order, we present 
the spatially averaged spin correlations C l C( ) = ∑N N l j j j l

1
− , +  for diffe-

rent system sizes N as a function of the interspin distance 1 ≤ l ≤ N − 1  
in Fig. 3b. The averaged correlations for different system sizes in the 
CSB phase nearly overlap and saturate to a non-zero value in the N ≫ 1 
and l ≫ 1 limit indicated by the purple dashed line. The measured values 
of CN(l) also agree well with those from the numerical simulation of the 
experiment shown in Extended Data Fig. 6. The simulation takes into 
account single-qubit and collective decoherence processes present in 
our experiment, and is thus limited to N ≤ 11 (see Methods for the tech-
nical details). By contrast, the spatially averaged correlations of the 
disordered phase alternate in sign and quickly decay to zero.

We further quantify the averaged correlation of the CSB phase by 
extracting the order parameter

M ∑N
N N

C( ) =
1

( − 1)
, (2)

i j
ij

≠

as shown in Fig. 3c. The order parameter M N( ) clearly saturates at a 
non-zero value, indicating the emergence of long-range order. We also 
note that the measured average correlation M N( )2  in our system is 
generally larger than the asymptotic correlation CN(∞), due to the spa-
tial variation of the correlations Cij across the system.

On the other hand, the magnetizations in the x–y plane, obtained by 
averaging over N spins and over thousands of experimental repetitions, 
are nearly zero. This result is expected from the underlying U(1) sym-
metry and the finite size of the chain. The average magnetization along 
z in the CSB phase and the average magnetizations in the disordered 
phase are presented in Extended Data Fig. 4. We point out that, for each 
cycle of the experiment, the measured spin magnetizations are in fact 
non-zero along the x or y direction (or any direction in the x–y plane), 
as indicated by the measured order parameter M N( ) in Fig. 3c. The 
continuous U(1) symmetry is therefore explicitly broken by 
symmetry-breaking measurements here. For a sufficiently large system 
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Fig. 2 | Preparation of quantum phases. a, Adiabatic ramp profiles of the 
effective XY Hamiltonian, s(t), and the staggered magnetic field Hamiltonian, 
1 − s(t), as a function of time t. The inset shows the average correlation 

N C( = 7) = ∑i j ij
2 1

21 <M , where experimental data points are represented by 
triangles and an exponential fit line is included to guide the eye. b,c, Measured 
spin–spin correlations C σ σ σ σ= +ij i j i j

+ − − +̂ ̂ ̂ ̂  developed during the ramp for the 
subset of N = 7 interacting spins (−3 ≤ i, j ≤ 3) are indicated with small dark blue 
spheres; the other ions (light blue) are not addressed by optical fields and their 
spin states do not participate in the dynamics. b, Initializing the spins in the 
highest excited state of the staggered-field Hamiltonian along the z direction 
leads to a low-temperature state of the ferromagnetic XY Hamiltonian at the 
end of the ramp. The pronounced positive correlations between all interacting 
spins indicate the continuous symmetry-breaking (CSB) phase. c, Initializing 
the spins in the ground state of the staggered-field Hamiltonian prepares a 
low-temperature state of the antiferromagnetic XY Hamiltonian.
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Fig. 3 | Long-range order. a, The measured correlation matrix Cij of the prepared 
CSB phase for a subset of N = 7, 11, 15, 19 and 23 interacting spins. Dark blue 
spheres indicate the ions that are illuminated by the addressing beams.  
b, Spatially averaged correlations C l C( ) = ∑N N l j j j l

1
− , +  as a function of the interspin 

distance l for different subsystem sizes N. The correlations in the CSB phase 
(greyish purple) saturate asymptotically at a non-zero value of 0.062 ± 0.005 in 
the N, l ≫ 1 limit (dashed line), manifesting long-range order. By contrast, the 
staggered correlations of the disordered phase (magenta) decay quickly to zero. 
The shape and brightness of the symbols indicate the number of interacting spins 
N. c, The purple data for the order parameter of the CSB phase M N( ) (equation (2)) 

saturate asymptotically at a sizeable non-zero value of B = 0.35 ± 0.08, while the 
average transverse magnetization in the x–y plane (pale symbols) is small, as 
expected from the continuous U(1) symmetry in a finite system. Data in a and b as 
well as the purple data in c correspond to the interaction matrix that is partially 
shown in Fig. 1c. The black data in c corresponds to the interaction matrix that is 
partially shown in Extended Data Fig. 1 and exhibits a shorter interaction range. 
The black data for the order parameter saturates asymptotically at B = 0.36 ± 0.18. 
Solid lines in b and c represent fits to f(x) = Ae−x/L + B, where A, L and B are fitting 
parameters. Both configurations exhibit a similar B in light of the standard 
deviation errors that are estimated from the fit.
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size, the continuous symmetry may also be broken spontaneously by 
generic symmetry-breaking perturbations.

The CSB phase is expected to persist in a system described by the XY 
Hamiltonian as long as the interactions have a sufficiently long range2,3. 

The dependence of the interaction range on optical Raman fields allows 
us to examine the relationship between the correlations and interac-
tion range. We repeat the experiment with two other configurations 
exhibiting different interaction ranges, following a similar preparation 
protocol (Methods). In one configuration, which corresponds to the 
experimentally reconstructed interaction matrix Jij shown in Extended 
Data Fig. 1 and Extended Data Fig. 5a (black curve), we prepare a spin 
state that exhibits long-range correlations, with a non-zero, yet smaller, 
order parameter for the CSB phase, as shown in Fig. 3c. In the other 
configuration, which has a considerably shorter interaction range as 
shown in Extended Data Fig. 5a (blue curve), we prepare a spin state that 
exhibits short-range correlations and is associated with a disordered 
phase (Extended Data Fig. 5b (right),c (blue)). These results highlight 
the key role played by the long-range interactions in realizing the emer-
gent long-range order.

While the state we prepare is not in thermal equilibrium, we can esti-
mate its effective temperature using numerical simulations. Here, we 
compare the correlations of our final state to those of a thermal state 
at the same energy. Our analysis, which focuses on the configuration 
corresponding to the black curve in Extended Data Fig. 5a, reveals that 
the final state has a low effective temperature T . For example, for N = 11, 
we find Tk E≈ 0.07B int, where E J= ∑N i j i jint

1
≠ ,  denotes the average value 

of the total interaction strength per spin and kB is the Boltzmann con-
stant. See Methods and Extended Data Fig. 9 for details.

We also utilized numerical simulations to model potential future 
experiments that could be conducted on our platform with larger sys-
tem sizes and a wider range of interactions (Methods). These experi-
ments would allow for the direct study of the exotic phase transition 
between the CSB phase and the disordered phase that is induced by 
changing the interaction range.

The simultaneous individual control over the Raman fields provides 
a probe to the CSB phase’s dynamical response to different perturba-
tions. We observe the response of a perturbed CSB phase under the 
effective XY Hamiltonian in a system of N = 19 spins. We perturb the 
prepared CSB phase by rotating the spin of the individual ions by a 
variable angle θj about the z axis while maintaining them in the x–y 
plane. We invert the spins to the right of the centre (j > 0) (θj = π) while 
leaving the spins to the left of the centre (j < 0) unperturbed (θj = 0). 
The central spin (j = 0) is rotated by θ0 = π/2. This operation breaks the 
global U(1) symmetry of the state while preserving the symmetry in the 
left and right subsystems.

Figure 4 shows the measured correlations σ σx
i

x
j( ) ( )̂ ̂  as a function of 

the evolution time τ from state preparation at τ = 0. Initially, the spins 
within each side (i, j < 0 or i, j > 0) of the crystal have positive correla-
tions, while the correlations between spins on different sides are 
negative, as shown in Fig. 4a. During the evolution, the intercorrelations 
between the two sides decay faster than the intracorrelations within 
each side. At longer evolution times, the two sides of the crystal, as well 
as the middle spin, overcome the perturbation and develop positive 
correlations. In Fig. 4b, we show the full time evolution of the system 
by plotting the averaged correlation Cn = ∑{i, j}Cij for {i, j} taken within 
the coloured contours labelled as 1, 2, 3 in Fig. 4a, corresponding to  
n = 1, 2, 3, respectively. This demonstration shows our capability for 
further investigation of the properties of the symmetry-breaking phase. 
We have also performed numerical simulation of this quench experi-
ment in the absence of dissipation. The simulation results, shown in 
Extended Data Fig. 7, agree qualitatively with the experimental data 
in Fig. 4.

In summary, we observe a continuous symmetry-breaking phase 
with long-range order in a one-dimensional spin chain, manifested 
at different interaction ranges. Moreover, we show the preparation 
of a disordered phase with fast-decaying staggered correlations. As a 
teaser on the study of non-equilibrium dynamics, we show the full time 
evolution of the perturbed CSB phase. This work opens new avenues 
for studying quantum phases of matter in low-dimensional systems.
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Fig. 4 | Out-of-equilibrium dynamics. Following the preparation of the CSB 
phase for N = 19 spins, we perturb the state by rotating the spins in the x–y plane 
by a spin-dependent angle θ at τ = 0. a, Measured spin–spin correlations ̂ ̂σ σx
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developed during the evolution by the effective XY Hamiltonian for time τ. At 
τ = 0 (top left), spins within the right or within the left side of the chain feature 
positive correlations, while correlations between spins on different sides are 
negative. The middle spin has a near-zero correlation with the rest of the chain. 
At τ = 0.14 ms (top right), the intercorrelations between the two sides decay 
quickly while the intracorrelations within each side are maintained. At later 
times (bottom) the entire chain develops positive correlations. b, Average 
correlation as a function of time. The dots in different colours correspond  
to the correlation averaged within the corresponding coloured contours 
shown in a (top left). Exponential fits with an offset (solid lines) are applied  
to guide the eye. The error bars indicate one standard error of the mean. The 
data in this figure correspond to the interaction matrix partially shown in 
Extended Data Fig. 1.
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The techniques presented in this work can be extended to study, for 
example, the phase diagram of the ferromagnetic XXZ model that was 
studied theoretically in ref. 3. This model extends the XY model studied 
in this work by adding an additional interaction term that couples spins 
in the z direction. Such a Hamiltonian can potentially be simulated 
using the techniques presented in refs. 17,29, which essentially involve 
adding a spatially uniform longitudinal field to the Hamiltonian we 
implement in equation (3). For example, applying a field that domi-
nates the Ising interaction yields approximately the XXZ Hamiltonian, 
where the anisotropy of the interaction can be controlled through 
the orientation of the field with respect to the Ising interaction axis17. 
The additional longitudinal field term can be realized in a trapped-ion 
quantum simulator in a native manner18.

While completing this project, we became aware of a complementary 
demonstration of CSB in a two-dimensional Rydberg array30.
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Methods

Interaction Hamiltonian
We generate spin–spin interactions using Raman transitions that virtu-
ally excite collective motion of the ions. The beam that globally 
addresses the ion chain traverses an acousto-optical modulator that 
is simultaneously driven with two radio-frequency signals, splitting 
the optical beam into two components with distinct tones. These two 
tones drive simultaneously the first red and blue sideband transitions 
in the dispersive regime with symmetric detunings Δ of the Raman 
beatnote from the highest-frequency mode of the ion chain. We control 
the radial electrostatic potential to spectrally separate the two sets  
of radial modes and to align the wavevector difference of the Raman 
fields to the addressed set. In this configuration, we realize the Ising 
Hamiltonian H t s t J σ σ( ) = ( ) ∑ij ij x

i
x

j
XX

( ) ( )̂ ̂ . The time dependence of the  
Ising Hamiltonian is realized by varying the Rabi frequencies of the 
ions by a factor of s t( ) ; this is achieved by controlling the power  
of N (greater than 23) radio-frequency signals feeding a multichan-
nel acousto-optical modulator which modulates the amplitude of  
the individually addressing beams, while turning off all other (23 − N) 
channels.

We apply an effective transverse field at each spin by shifting  
the frequency of the beam addressing the j-th ion as a function of  
time by fj = 2s(t)B + 2(1 − s(t))(−1)jh, where B is a spatially uniform trans-
verse field. This combination generates the transverse-field Hamil-
tonian that is composed of two terms: a spatially uniform transverse 
field Hamiltonian H s Bσ= ∑B j z

j( )̂  and a staggered field Hamiltonian 
H s h σ= (1 − ) ∑ (−1)h j

j
z

j( )̂ . The total experimentally applied time-dependent 
Hamiltonian is therefore

H H H H′ = + + . (3)B hXX

The longer-range configuration with the interaction matrix in  
Fig. 1c and purple curve in Extended Data Fig. 5a corresponds to 
Δ ≈ 2π × 20 kHz, B = 2π × 1.6 kHz, h = 2π × 0.9 kHz, and a ramp time of 
T = 2.55 ms. The average nearest-neighbour interaction strength  
is J J π= ∑ = 2 × 0.09 kHzN i i i

1
− 1 , +1 . The second configuration with the 

interaction matrix in Extended Data Fig. 1 and black curve in Extended 
Data Fig.  5a corresponds to Δ ≈ 2π × 55 kHz, B = 2π × 6.5 kHz, 
h = 2π × 4.2 kHz, a ramp time of T = 0.54 ms, and J π= 2 × 0.5 kHz. The 
third configuration with the interaction profile shown in Extended 
Data Fig. 5a (blue) corresponds to Δ ≈ (ω1 − ω27) − 2π × 500 kHz (detuned 
by about 2π × 200 kHz from the zig-zag mode), B = 2π × 430 Hz, 
h = 2π × 330 Hz, a ramp time of T = 4.4 ms, and J π= 2 × 50 Hz. We set 
the values of the Rabi amplitudes Ωi to ensure that the nearest-neighbour 
interactions satisfy J J=i i, +1  (equation (4)). However, this leads to inho-
mogeneous light shifts due to the non-uniformity of the Rabi ampli-
tudes. To address this, we independently calibrate and compensate 
for the inhomogeneity during the experiment by adding an effective 
site-dependent magnetic field. Moreover, we make sure that the evolu-
tion is represented by Jij > 0 for this configuration. We correct for the 
staggered sign of the Jij matrix that is obtained from equation (4) 
through the application of a staggered spin-phase, which corresponds 
to the transformation ̂ ̂σ σ→ −x

i
x
i( ) ( ) for odd i in HXX(t).

The applied transverse field overwhelms the Ising interaction 
because B J≫ . Using the definition of the raising and lowering spin 
operators, σ σ iσ= ( ± )i

x
i

y
i

±
( ) 1

2
( ) ( )̂ ̂ ̂ , we can represent the Ising interaction in 

a frame rotating at the Larmor frequency of the uniform field by 
σ σ σ σ σ σ≈ ( + )x

i
x

j i j i j( ) ( ) 1
2 +

( )
−
( )

−
( )

+
( )̂ ̂ ̂ ̂ ̂ ̂ , bestowing fast oscillations to the σ σi j

±
( )

±
( )̂ ̂  

terms. This construction produces the effective XY Hamiltonian 
described in the main text.

The inhomogeneity in the experimentally measured Jij primarily origi-
nates from the structure of the mode participation factors bnk, which 
determine the extent to which the n-th ion participates in the k-th pho-
non mode. To achieve long-range interactions, we detuned our Raman 

lasers far from the mode spectrum but on the side of the centre-of-mass 
mode, which is the highest-frequency mode whose participation fac-
tors are most uniform. In an ideal scenario, the non-uniformity of the 
mode participation factors would lead to a variation of about 3% in 
the nearest-neighbour spin–spin coupling across the chain, assuming 
uniform Raman power for all ions. However, the larger experimental 
non-uniformity is attributed to additional variation in the mode par-
ticipation factors. After the experiment was conducted, we discovered 
that this variation was likely caused by a defective connection of one of 
the electrodes that make up the ion trap, which led to an inhomogeneity 
of the electrostatic trapping potential.

Experimental reconstruction of the Jij matrix
We measure each Jij element by turning on the two beams addressing 
the i-th and j-th ions while turning off all other beams in the array. The 
ions are initialized in the state ∣↑ ↓ �z

i
z

j( ) ( )  for j > i, and the transverse field 
is adjusted to zero (fi = fj = 0). We apply a constant-amplitude pulse 
with a Rabi frequency that is scaled by a factor g = 1.3 in the first confi-
guration (interaction matrix in Fig. 1) and by g = 1 in the second con-
figuration (interaction matrix in Extended Data Fig. 1) and measure 
the population oscillations. We fit the average staggered magnetiza-
tion σ σ−z

i
z

j1
2

( ) ( )̂ ̂  to the function Γ t πg J texp(− )cos( )ij ij
2  using Jij and Γij  

as fitting parameters. The measured values of Γij are given in Extended 
Data Fig. 2, and an example of the reconstruction is shown in Extended 
Data Fig. 3.

Numerical calculation of the Jij matrix
We calculate the interaction matrix Jij that results from applying a 
spin-dependent optical dipole force with the Raman lasers, following 
refs. 18,31. These lasers generate coupling between the spins and the 
collective motional modes along a single radial direction, virtually 
exciting phonons that mediate the spin–spin interaction.

∑J
η η

ω ω
=

Ω Ω

2(∆ + − )
. (4)ij

k

ik jk i j

k1

The spin–motion coupling matrix is represented by the Lamb–Dicke 
parameters ηnk = 0.08bnk, where bnk is the mode participation matrix 
element describing the coupling between spin n and motional mode 
k (ref. 26). We numerically calculate the matrix bnk and the frequencies 
of the motional modes ωk, listed in decreasing order, for the applied 
trapping potentials; we consider a quadratic trapping potential in the 
radial direction with centre-of-mass frequency ω1 = 2π × 3.3 MHz and 
an axial potential of V(x) = 250 × x4 − 0.1 × x2, where x is the coordinate 
along the chain axis in millimetres and V is the axial electrostatic poten-
tial in electron volts. This potential yields a nearly uniform-spaced ion 
chain for the inner 23 ions with a spacing of 3.75 μm. Ωi represents the 
equivalent resonant carrier Rabi frequency at ion i, and we assume a 
spatially uniform profile.

In Extended Data Fig. 5 we present the numerically calculated aver-
aged interaction J l J( ) = ∑N l i i i l

1
− , +  as a function of the distance l for  

the three configurations (circles), where J J≡ (1). To calculate the spin–
spin interaction, we model our radial trapping potential as harmonic 
and the axial trapping potential with a fourth-degree polynomial. We 
adjust the coefficients of each term in the polynomial expansion to 
match the interion spacing in the experiment, using a procedure sim-
ilar to that described in ref. 28,32. Next, we compute the mode frequen-
cies and mode participation factors. Finally, we use equation (4) to 
determine the spin–spin coupling, given the Raman beatnote detuning 
and Rabi frequencies. We also present the average experimentally 
measured interaction (open squares), where the bars reflect the total 
spread of values between different pairs, excluding points for which 
the error in the reconstructed value exceeded the actual measured 
value (only for several elements with l = 5 in the second configuration 
which appear in Extended Data Fig. 1 as zero). The measured and the 



calculated values are in a good agreement. We fit the theoretical values 
to the fitting function

J l J e l( ) = , (5)β l α− ′( −1) − ′

which we adapt from ref. 33. The fitted parameters are α′ = 0.44 , 
β′ = 0.19 for the first configuration (purple line), α β′ = 1, ′ = 0.19  for 
the second configuration (black line) and α β′ = 3.4, ′ = 0.0 for the third 
configuration (blue line).

Numerical simulation of the experiments
Here we describe the details of the numerical simulation we performed 
in this paper. We numerically simulate the evolution of the experimen-
tally prepared initial state (Fig. 2b) under the time-dependent Hamil-
tonian H′ in equation (3). The Ising interaction matrix {Jij} is obtained 
using equation (4), normalized such that the average nearest-neighbour 
interaction matches the experimentally measured values (Fig. 1c). 
Particularly, we take into account two major sources of decoherence 
that likely exist in our experiment: Each qubit i is subject to an indi-
vidual dephasing rate γi along the x direction and additionally, all qubits 
decohere collectively at rate γc primarily due to the heating of the 
centre-of-mass phonon mode. The density matrix of the system ρ then 
evolves according to the following master equation:

̂ ̂

̂ ̂
̂ ̂

























( )∑ρ
t

i
ħ

H t ρ γ ρ σ ρσ

γ
S ρ ρS

S ρS

d
d

= − [ ′( ), ] − −

−
+
2

− ,

(6)
i

i x
i

x
i

c
z z

z z

( ) ( )

2 2

where ̂ ̂S σ= ∑z i z
i( ) represents the collective Pauli operator. The values 

of γi and γc are obtained by performing the best fit to the measured 
pairwise decoherence rate matrix {Γij} shown in Extended Data Fig. 2. 
We then calculate {CN(l)} and compare them with their experimental 
values from Fig. 3b. Such comparison is shown in Extended Data Fig. 6 
for either N = 7 or N = 11. A good agreement between the theory and 
experiment is observed, except for some boundary effects that are 
more pronounced in the theory. Simulation for N ≥ 15 qubits with deco-
herence is beyond our current numerical simulation capability.

In addition, we also simulated the unitary quench dynamics experi-
ment (in the absence of decoherence). In this case, we are evolving 
the state only under the Hamiltonian in equation (3), which allows us 
to simulate the experiment for N = 19 qubits. The results are shown in 
Extended Data Fig. 7, which agree qualitatively with the experimental 
counterparts in Fig. 4. The fast oscillations in the numerical simulation 
are due to the large transverse field (HB in equation (3)) we applied to 
simulate the XY interaction. The lack of oscillations and the smaller 
values of correlations observed experimentally are likely due to the 
effects of decoherence.

To show that the experimentally prepared state at the end of the 
ramp is approximately described as a low-temperature thermal state, 
we first calculate the energy E of the experimental state with respect 
to the ferromagnetic XY Hamiltonian (the negative of H defined in 
equation (1) with s = 1). This calculation is made possible by our experi-
mental measurements of σ σx

i
x
j( ) ( )̂ ̂  and ̂ ̂σ σy

i
y
j( ) ( )  for all pairs of (i, j), as 

shown in Extended Data Fig. 8. We then numerically find an effective 
temperature T  such that the thermal state 

T
T Tρ e e= / Tr [ ]H k H k/( ) /( )B B  

also has energy E. We then compare the experimentally measured cor-
relations CN(l) (Fig. 3c) with those calculated in the thermal state. An 
example of such a comparison for the second experimental configura-
tion (black curve in Extended Data Fig. 5a) and N = 11 is shown in 
Extended Data Fig. 9. We find a reasonable agreement between the 
correlations in the two states, with Tk π= 2 × 0.03B  kHz, taking ħ = 1 in 
the simulation. As the average interaction strength per spin is about 

2π × 0.43 kHz, we see that the experimental state can be regarded as a 
low-temperature state.

Our platform has the potential to enable future experiments with 
larger system sizes, which could allow us to study the phase transition 
between the CSB phase and the disordered phase by changing the 
interaction range. To illustrate this possibility, we have numerically 
simulated the order parameter N( )M  (defined in equation (2)) in the 
ground state of −H (where H is defined in equation (1), with s = 1) for 
system sizes N = 23, N = 49 and N = 89, using a variational matrix prod-
uct state algorithm34. For each value of N, we compute the interaction 
matrix Jij by fixing the values of the axial trapping potential (taken as 
a sixth order polynomial) to generate an ion chain with approximately 
uniform ion distances. We then scan the interaction profiles that can 
be achieved using the single parameter Δ, which corresponds to the 
sideband detuning relative to the centre-of-mass mode. Finally, we 
use an approximate form by fitting the interaction matrix to equa-
tion (5) for each detuning.

We plot M N( ) as a function of the sideband detuning Δ in Extended 
Data Fig. 10. Increasing Δ from 0 to ∞ monotonically decreases the 
interaction range from all-to-all to dipolar. As the system size increases, 
the order parameter N( )M  of the CSB phase undergoes a sharper 
change as the interaction range is decreased, indicating a phase transi-
tion out of the CSB phase. This phase transition is of infinite order, 
making it difficult to find the exact phase transition point even for 
systems with a few hundred spins3. However, approximate calculations 
using either spin-wave theory or field theory can be used to predict 
the phase transition point in the limit of large system sizes3.

Effect of boundaries and disorder
Here, we analyse the effect of boundaries as well as the variation in the 
interaction profile in both the disordered/XY phase (characterized by 
power-law decaying correlations) and the CSB phase (with long-range 
order). Specifically, we argue that (1) boundaries lead to a faster decay 
of correlations in the XY phase (owing to the significant role played by 
fluctuations) while the CSB phase is rather insensitive to the boundaries 
and (2) the CSB phase is robust against some amount of variation in Jij.

Point (1) implies that boundaries tend to weaken long-range correla-
tions in the XY phase but are inconsequential in the CSB phase. This 
observation rules out the possibility that long-range order could be 
an artefact of boundary effects.

Point (2) shows that the CSB phase is robust against the non- 
uniformity of the interaction profile. This is particularly important 
since the interaction profile Jij in the experimental setting is rather 
non-uniform for a given separation ∣i − j∣. While the non-uniformity of 
the experimentally measured Jij originates from the experimental set-
tings we realize (particularly the shape of the trapping potential), in the 
analysis below, we also consider disorder in Jij caused by fluctuations of 
parameters from one experiment to another and study the behaviour 
of the XY and CSB phases at weak disorder strength. We note that there 
is also some degree of uncertainty on the measured Jij that is especially 
pronounced at larger separations ∣i − j∣, owing to their weaker values 
compared to nearest-neighbour Jij and the presence of decoherence.

Effect of boundaries
Short-range interactions. The XY model with short-range interactions 
can be described by an effective Hamiltonian in the continuum limit as5

∫H
u
π

x
K

φ K θ=
2

d
1

(∂ ) + (∂ ) , (7)x xSR
2 2

where the bosonic variables ϕ and θ provide a bosonization of the spin 
variables. Roughly speaking, the field θ gives the spin orientation in 
the x–y plane, S S S e= ± ≈j j

x
j
y iθ x± ± ( )j , while the gradient of ϕ characterizes 

the spin component along the z axis. These bosonic variables are con-
jugate, that is, they satisfy φ x θ x iπδ x x[∂ ( ), ( ′)] = ( − ′)x . The parameter 
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K is the so-called Luttinger parameter; specifically, K = 1 for the 
nearest-neighbour XY model. An effective action can be derived in 
terms of one of the two variables as

∫I
K
πu

x τ θ θ=
2

d d [(∂ ) + (∂ ) ], (8)τ x
2 2

which determines the nature of (phase) fluctuations. These fluctuations 
destroy any kind of ordering:

S e� � ≈ → 0, (9)θ± − 1
2

� �2

as ∫θ q q N� � = d / ≈ log
N

2
1/

 diverges logarithmically with system size N, 
in agreement with the Mermin–Wagner theorem. These fluctuations, 
however, give rise to long-range correlations (but not ordering) 
defined by

S S e� � ≈ , (10)i j
θ x θ x+ − − 1

2
�( ( )− ( )) �i j

2

where xi represents the position corresponding to the lattice point i. 
For an infinite system (or a finite system well within the bulk, away from 
the boundaries), we have

∫θ x θ y
K

q
q x y
q

K
x y

�( ( ) − ( )) � =
1

d
1 − cos ( − )

≈
1

log − ,
(11)

2

∣ ∣

where ∣x − y∣ ≫ 1. It then follows from equation (10) that the spin cor-
relations decay as 1/∣x − y∣1/(2K).

Next, we consider an open spin chain with a boundary at x = 0. In the 
continuum limit, this corresponds to a ‘fixed-end’ boundary condition 
for the field ϕ (ref. 5). The latter variable is conjugate to θ with the com-
mutation relation φ x θ x iπδ x x[∂ ( ), ( ′)] = ( − ′)x . Fixing the field ϕ then 
dictates a free boundary condition for θ, that is, ∂xθ(0) = 0. The phase 
fluctuations are then given by

∫θ x θ y
K

q
qx qy

q

K
x y

�( ( ) − ( )) � =
1

d
(cos( ) − cos( ))

≈
3

2
log − ,

(12)

2
2

∣ ∣

roughly when x ≈ 1 is close to the boundary while y is far away. Notice 
that the coefficient of the logarithm is larger than that in equation (11) 
and thus leads to a faster decay of correlations approximately equal to 
1/∣x − y∣3/(4K). Therefore, bulk-boundary correlations decay faster than 
correlations well within the bulk. This should be expected because the 
field θ, corresponding to a free end, is highly fluctuating at the edge. 
In short, the existence of a boundary suppresses long-range correla-
tions. For sufficiently large systems, these predictions can be verified 
using matrix product state algorithms. For smaller system sizes, the 
same qualitative trend persists although correlations do not exactly 
fall off as a power law.

Long-range interactions
The long-range interactions in our experiment take the form of Jl~e−l/R

l−α, where l is the distance between two spins. If R is proportional to the 
system size, this interaction pattern is not very different from the sim-
ple 1/lα power-law-decay interaction pattern. Therefore, for simplicity, 
in this analysis, we assume a long-range interacting XY Hamiltonian of 
the form S S S S∑ ( + )

i j i j i j
1

| − |
+ − − +

α . This Hamiltonian leads to a long-range 
term in the continuum limit3:

∫H x y
x y

θ x θ y≈ − d d
1

−
cos[ ( ) − ( )]. (13)αLR

LR

The integral is computed over all x and y for ∣x − y∣ > λ with λ a 
short-wavelength cutoff (for example, lattice spacing). If the long-range 
interactions are relevant, the system becomes ordered, say along the 
x direction, and the Hamiltonian can be expanded around θ = 0. The 
effective field theory describing this phase is given by3

∫ ∫I τ x θ
τ x y
x y

θ x τ θ y τ= d d (∂ ) +
d d d

−
( ( , ) − ( , )) . (14)τ α

2

LR

2

We can then determine the dynamic exponent z and the scaling dimen-
sion [θ] as3

z
α

θ
α

=
− 1
2

, [ ] =
3 −

4
. (15)

The scaling dimension (θ) determines the decay of the phase correla-
tions in the CSB phase: 〈θ(x)θ(y)〉 ≈ 1/∣x − y∣2[θ]. The latter correlations 
are due to fluctuations on top of long-range order, which implies 

S S� � → constanti j
+ −  at large separations.
In contrast with the XY phase, fluctuations in the CSB phase only lead 

to a slight suppression of the order parameter: S θ� � ≈ exp(−� �/2)± 2 , 
where ⟨θ2⟩ ≈ ∫dq/qz with z the dynamic exponent in the CSB phase in 
equation (15). The dynamical exponent z < 1 describes a nonlinear light 
cone owing to the long-range interactions3. The fact that z < 1 renders 
the above integral finite, and the order parameter remains finite. Fur-
thermore, this means that the CSB phase could only occur for z < 1, 
which implies α ≤ 3 (ref. 3). On similar grounds, one can see that the 
boundary has little effect on the order parameter or on the correlations 
because it only modifies the fluctuations, which are inconsequential 
in the CSB phase.

Effect of disorder in Jij

We now consider the effect of disorder in the interaction profile {Jij} in our 
experiment. To be specific, we assume that either the mode structure 
coefficients {ηi,k} or the Rabi frequencies {Ωi} (or both) in equation (4) 
have small (relative to their expected values) fluctuations from one 
experiment to another. Such fluctuations effectively lead to fluctua-
tions in Jij that take the approximate form Jij(1 + δi + δj), where {δi} are 
assumed to be small, independent random variables with zero mean and 
standard deviation D. As the spin correlations we measure come from 
an average over many experiments with each having a slightly different 
interaction profile {Jij}, the fluctuations in Jij effectively lead to disorder.

Again assuming for simplicity that Jij ≈ 1/∣i − j∣α, the effective Hamil-
tonian corresponding to the disordered interaction in the continuum 
limit then becomes

∑H
δ δ

i j
θ x θ x=

+

−
cos( ( ) − ( )). (16)Dis

i j

i j
α i j

<

In the CSB phase, we expand around θ = 0 to find a quadratic term in 
θ(xi) − θ(xj). Performing the average over disorder using the replica 
trick5, we obtain the effective action













∫

∫

∑ ∑ ∑

∑

I D τ
θ x τ θ x τ

i j

D
τ τ x y y

x y x y

θ x τ θ y τ θ x τ θ y τ

≈ − d
( ( , ) − ( , ))

−

→ −
d d ′d d d ′

− − ′

× ( ( , ) − ( , )) ( ( , ′) − ( ′, ′)) ,

(17)

Dis
i j a

n
a i a j

α

a b

n
α α

a a b b

=1

2 2

, =1 LR

2 2

where a = 1, 2, …, n denote the replicas; the second line in equation (17) 
is obtained in the continuum limit. A simple scaling analysis then shows 
that the strength of disorder D decreases under rescaling (x → e−lx) as

D
l

z α θ D D
d
d

= (3 + 2 − 2 − 4[ ]) = − , (18)



where we used equation (15). This result implies that the disorder is 
irrelevant in the CSB phase.

For α < 1, the Hamiltonian is super-extensive (that is, the energy den-
sity increases with system size), and the above analysis should be 
modified. It is convenient to divide the Hamiltonian by a (Kac) nor-
malization factor defined as ∑ J N= ≈N ij ij

α1
− 1

1−N , rendering the  
Hamiltonian extensive35. Such normalization only affects the overall 
energy scales and does not change the phase of the system. The ground 
state of the XY Hamiltonian with α < 1 is always in the CSB phase2,3. One 
can see this, for example, from the spin–wave analysis assuming a CSB 
phase where all the spins are polarized along the +x direction.  
A Holstein–Primakoff mapping gives S a a= 1 − 2i

x
i i
†  and S a a≈ +i

y
i i

†.  
The Hamiltonian then becomes2

N N

N N
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where a e a= ∑k N j
ijk

j
1  and ∼J J kl= ∑ cos( )k l l ; specifically, we have 

N
∼J =k=0 . The dispersion relation is then given by

∼
Nω J= 1 − / . (20)k k

One can see that k = 0 is the zero (or, the Goldstone) mode since ωk=0 = 0. 
For α > 1, the dispersion ωk depends continuously on k in the thermody-
namic limit (N → ∞) and vanishes with k as k → 0. In contrast, for α < 1, the 
spectrum remains discrete and the zero mode at k = 0 has a finite energy 
difference from the next mode at k = 2π/N (ref. 36). The gapped modes 
will not contribute to critical fluctuations and one can furthermore 
show that the zero mode exhibits subextensive fluctuations, hence 
the stability of the CSB phase against fluctuations. To analyse the effect 
of disorder, we note that the disorder in Jij effectively couples the zero 
mode to the gapped modes of the system. Such coupling is generically 
irrelevant, and the CSB phase will be stable.

The behaviour of the XY phase under disorder is beyond the scope 
of this work; however, one generally expects that disorder would lead 
to a suppression or possible destruction of long-range correlations 
and could even lead to localization phenomena.

Data availability
Data that support the findings of this study are available from the  
corresponding authors on reasonable request.
 
31. Kim, K. et al. Entanglement and tunable spin-spin couplings between trapped ions using 

multiple transverse modes. Phys. Rev. Lett. 103, 120502 (2009).
32. Katz, O. & Monroe, C. Programmable quantum simulations of bosonic systems with 

trapped ions. Phys. Rev. Lett. 131, 033604 (2023).
33. Pagano, G. et al. Quantum approximate optimization of the long-range ising model with a 

trapped-ion quantum simulator. Proc. Natl Acad. Sci. USA 117, 25396 (2020).
34. Jaschke, D., Wall, M. L. & Carr, L. D. Open source matrix product states: opening ways to 

simulate entangled many-body quantum systems in one dimension. Comput. Phys. 
Commun. 225, 59 (2018).

35. Kac, M., Uhlenbeck, G. & Hemmer, P. On the Van der Waals theory of the vapor-liquid 
equilibrium. I. Discussion of a one-dimensional model. J. Math. Phys. 4, 216 (1963).

36. Defenu, N. Metastability and discrete spectrum of long-range systems. Proc. Natl Acad. 
Sci. USA 118, e2101785118 (2021).

Acknowledgements This work is supported in part by the ARO through the IARPA LogiQ 
programme; the NSF STAQ, QLCI, RAISE-TAQS and QIS programmes; the AFOSR MURIs on 
Dissipation Engineering in Open Quantum Systems and on Quantum Verification Protocols; 
the ARO MURI on Modular Quantum Circuits; the DoE ASCR Quantum Testbed Pathfinder 
programme; NSF CAREER; AFOSR YIP; and the W. M. Keck Foundation. Support is also 
acknowledged from the US Department of Energy, Office of Science, National Quantum 
Information Science Research Centers, Quantum Systems Accelerator.

Author contributions All authors contributed to the experimental design, construction and 
discussions, and wrote the manuscript. O.K. and L.F. collected the data, and L.F. analysed the 
results. C.H., Z.-X.G., M.M. and A.V.G. performed analytical and numerical calculation.

Competing interests C.M. is the chief scientist for IonQ, Inc. and has a personal financial 
interest in the company. The other authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Lei Feng, Or Katz or 
Christopher Monroe.
Peer review information Nature thanks the anonymous reviewers for their contribution to the 
peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

http://www.nature.com/reprints


Article

Extended Data Fig. 1 | Partial reconstruction of the interaction matrix in 
the second experimental configuration. The experimentally reconstructed 
Jij matrix is shown for a second experimental configuration up to five nearest 

neighbors. The full modeled interaction is detailed in the Methods section and 
is shown in Extended Data Fig. 5. This matrix exhibits long-range interaction, 
which is nevertheless shorter than the interaction in Fig. 1c.



Extended Data Fig. 2 | Decoherence rate matrix. The measured decoherence 
rate matrix Γij is extracted from the reconstruction protocol for up to five 
nearest neighbors (see Methods). a, The measured relaxation accompanying 

the interaction matrix in the first configuration (Fig. 1c). b, The measured 
relaxation accompanying the interaction matrix in the second configuration 
(Extended Data Fig. 1).
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Extended Data Fig. 3 | Demonstration of the reconstruction protocol.  
We measure the interactions between the i = -6 ion with its up to five-nearest 
neighbors, by turning on the a single pair of beams addressing two ions a time. 
Specifically (i, j) = (-6,-5) in a, (-6,-4) in b, (-6,-3) in c, and (-6,-2) in d and (-6,-1)  
in e, as indicated by a dark blue sphere. We fit the staggered magnetization 
m σ σ= −s

1
2 z

i
z
j  to the function y πg J t e= cos( )ij

g ijt2 − 2Γ  to extract the interaction 

strength Jij and the decoherence rate Γij. The interaction rate as a function  
of the inter-ion spacing is shown in f. The fitted Jij for i = − 6 (circles). The black 
line corresponds to the fit function in Eq. (5) with fitting parameters 
α β′ = 0.44, ′ = 0.19. The errorbars indicate one standard error of the mean. The 
exemplary data in this figure corresponds to the interaction matrix in Fig. 1c 
with a scaling factor g = 1.3; see Methods.



Extended Data Fig. 4 | Average magnetization. The measured regular and staggered magnetization along the x (a), y (b), and z (c) axes for the first configuration 
(with interaction matrix in Fig. 1c). The errorbars indicate one standard error of the mean.
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Extended Data Fig. 5 | Modeled interaction and measured correlations.  
a, Numerically calculated spin-spin interaction based on Eq. (4) and a simple 
model of the trapping potential for the three experimental configurations, 
assuming a harmonic trap for the radial coordinates and a combination of 
quadratic and quartic potentials for the axial direction. The filled circles 
indicate the numerically calculated values with no free parameters. The solid 
lines are fits to the numerical results with a profile of J l J e l( ) = β l α− ′( −1) − ′

. The 
fitted parameters are α β′ = 0.44, ′ = 0.19 for the first configuration (purple), 
α β′ = 1, ′ = 0.19 for the second configuration (black), and α β′ = 3.4, ′ = 0 for the 
third configuration (blue). Open squares are the experimental data in two out 
of the three experimental configurations, where the bars represent the spread 
of measured values of all pairs at a specific spacing l, namely one standard error 
of the mean. b, Measured spin correlation for the first (left) and the third (right) 
configuration for the state prepared at the end of the ramp. c, Comparison 
between the spatially averaged correlations CN(l) for N = 23 as a function of 
inter-spin distance l for the long-range (purple) and the short-range (blue) 
configurations.



Extended Data Fig. 6 | Numerical simulation of the experiment in the first configuration. a and b show the comparison of the correlation functions CN(l) 
between the experimental data (filled) and numerical results (unfilled) including modeled decoherence. In a, the system size is N = 7, and, in b, it is N = 11.
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Extended Data Fig. 7 | Numerical simulation of the quench dynamics. We 
simulate the unitary quench evolution in Fig. 4 (i.e. without considering any 
decoherence processes). a, Measured spin-spin correlations ̂ ̂σ σx

i
x
j( ) ( )  

developed during the evolution by Eq. (3) for time τ. b, Average correlation as a 

function of time. The dots in different colors correspond to the correlation 
averaged within the corresponding colored contours shown in a (top left). The 
fast oscillations are due to the large but finite longitudinal magnetic field B.



Extended Data Fig. 8 | Long-range correlation. The correlation matrix 
̂ ̂C σ σ=ij

k
k
i

k
j( ) ( ) , with (a) k = x or (b) k = y, measured in the x and y basis, respectively, 

for various system sizes of N = 7, 11, 15, 19, and 23. This data corresponds to the 

first experimental configuration (purple curve in Extended Data Fig. 5a) that 
leads to the correlations presented in Fig. 3 via the relation C C C= ( + )ij

1
2 ij

x
ij
y .
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Extended Data Fig. 9 | Estimation of effective temperature. Comparison of 
the correlations CN(l) between the measured state (Fig. 3b) (purple) and a 
numerically calculated thermal-state (black) for N = 11. The thermal state has an 
effective temperature k E≈ 0.07B intT , with E J= ∑N i j i jint

1
≠ ,  denoting the average 

interaction energy. Here we consider the second experimental configuration 
presented as a black curve in Extended Data Fig. 5a.



Extended Data Fig. 10 | Simulation of larger spin chains. Numerical 
simulation of the order parameter N( )M  of the CSB phase in the ground state 
of − H (s = 1) for spin chains of different sizes (N = 23 in red, 49 in magenta, and 
89 in blue) as a function of the sideband detuning Δ. The sharp decrease in M at 
large Δ (short interaction range) compared to that at small Δ (large interaction 
range) indicates a phase transition from a disordered phase to the CSB phase.
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