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Phase transitions are emergent phenomena where microscopic
interactions drive a disordered system into a collectively ordered
phase. Near the boundary between two phases, the system can
exhibit critical, scale-invariant behavior. Here, we report on a
second-order phase transition accompanied by critical behavior in
a system of warm cesium spins driven by linearly polarized light.
The ordered phase exhibits macroscopic magnetization when the
interactions between the spins become dominant. We measure
the phase diagram of the system and observe the collective behav-
ior near the phase boundaries, including power-law dependence
of the magnetization and divergence of the susceptibility. Out of
equilibrium, we observe a critical slowdown of the spin response
time by two orders of magnitude, exceeding 5 s near the phase
boundary. This work establishes a controlled platform for inves-
tigating equilibrium and nonequilibrium properties of magnetic
phases.
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Investigations of correlated states of matter and their macro-
scopic phases are at the frontier of interdisciplinary physical

research. The macroscopic phase of interacting particles is de-
termined by an interplay between the energy and the entropy of
the system. When the entropy dominates, the system becomes
disordered whereas, for the energy-dominated system, the or-
dered phase dominates as it minimizes the free energy (1, 2).
Various phases are commonly described by macroscopic order
parameters such as density, conductivity, or magnetization. The
transition between different phases is commonly accompanied
by nonanalytic behavior of some properties of the system, e.g.,
the susceptibility, correlation length, and time. These nonan-
alytic properties are often associated with critical exponents,
which can be categorized into universality classes that depend
only on robust properties, such as the dimensionality and sym-
metries of the system (1–3). Although first discussed in the
context of equilibrium statistical mechanics, phase transitions
with characteristic critical exponents commonly appear also in
driven, nonequilibrium systems, and the properties of these tran-
sitions are often quite different from those of equilibrium systems
(4, 5).

Spin systems are used as key examples for magnetic phase
transitions as they are often relatively easy to study (6–10). In
condensed-matter systems, strong interactions between neigh-
boring spins can overcome their entropy and consequently with
ordered magnetic phases, as manifested in the rich phase dia-
grams of a wide range of materials and temperatures (11–14). In
gaseous systems in contrast, the particles typically interact spo-
radically, leading to prevalence of entropy over the interaction
energy and consequently with a magnetically disordered phase.
Only at ultracold temperatures in which entropy is sufficiently
low and quantum effects become dominant, atomic gases can
exhibit a magnetically ordered phase (15, 16). As atomic gases
feature both long spin lifetimes and a high degree of control
by optical means, they have prominent applications in physical
studies of equilibrium and nonequilibrium critical phenomena
(17–20). However, nontrivial phases of optically controlled spin
gases at ambient conditions have never been characterized.

The specific system we study in this article is a vapor of
neutral alkali atoms, above room temperature. These atoms have
a nonzero spin at their electronic ground level and could thus
sustain steady magnetization. The spin, a composite of the elec-
tronic and nuclear spins, can be prepared, controlled, and mon-
itored by optical means utilizing the strong spin–orbit coupling
provided by the single valence electron (21, 22). Frequent spin-
exchange collisions between pairs of atoms in the vapor manifest
a local spin-dependent interaction. This interaction often leads
to decoherence and relaxation (23) but can also enable coherent
coupling and facilitate optical pumping and sensing in various
applications (24–36). In particular, a pioneering work by Forston
and coworkers (37–39) has demonstrated the emergence of spon-
taneous spin polarization and magnetic bistability upon absorp-
tion of linearly polarized light. Forston and coworkers (37–39)
have characterized the spin state by measuring the hysteresis
appearing for slow variation of the light polarization. However,
the critical and collective behavior at the conditions where spon-
taneous polarization occurs has not been systematically studied.

Here, we report on the observation of critical behavior of
strongly interacting, warm cesium vapor. We measure the power-
law dependence of the macroscopic magnetization on both the
light intensity and gas density, as well as divergence of the
susceptibility to an external spin imbalance. We identify these
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phenomena as a second-order magnetic phase transition and
measure the phase diagram of the system. We observe divergence
of the spin response time up to a few seconds when crossing the
phase transition, two orders of magnitude longer than the 20-ms
spin lifetime. Furthermore, we observe a ninefold improvement
of the collective-spin lifetime near the phase boundary. Finally,
we discuss interesting potential avenues for this accessible plat-
form, including the exploration of additional phases in gaseous
systems, simulations of magnetic phenomena, and applications
to quantum magnetic sensing.

Results
Fig. 1 presents the physical system. The cesium atoms, enclosed
in a glass cell at near-ambient temperature, are unpolarized in
the absence of optical fields. In this magnetically disordered
phase, the cesium spins equally populate all 16 substates of
the electronic ground level. To stimulate the transition into an
ordered phase, we introduce linearly polarized pumping light
and increase the atomic density. The quantization axis ẑ is set
by an external magnetic field. We tune the optical frequency of
the pumping light near the D1 optical transition from the lower
hyperfine manifold (Fg = 3) and set its polarization x̂ perpen-
dicular to ẑ . This configuration aligns the spins along ẑ (38).
It preferentially and symmetrically populates the two maximally
polarized states (with spin projection mF =±4 along ẑ , in the
upper hyperfine manifoldFg = 4), marked by triangles in Fig. 1B.
It does so at a rate I linearly proportional to the intensity of the
optical field (Materials and Methods).

We maintain a constant temperature T, which we can vary
in the range of 55 to 120 ◦C. The temperature sets the vapor
pressure, originating from a reservoir (droplet) of cesium atoms,
allowing us to control the atomic density and thus to determine
the rate of spin-exchange collisions J. During a collision, the
electronic spins of the two colliding atoms experience random,
mutual precession, which conserves the total spin. The collisions
change the internal atomic spin states, generate correlations
between the atoms, and repopulate the lower hyperfine manifold.
They compose the microscopic interatomic interaction in our
system necessary for the formation of an ordered phase. The
interplay between optical pumping and spin-exchange collisions,
leading to an alignment of the spins, is schematically illustrated in
Fig. 1C for the case of two atoms. It is important to note that the
system does not reach equilibrium, but rather a nonequilibrium
steady state, as there is a constant flow of energy from the pump-
ing light through the system to the surrounding environment,
which breaks the detailed balance condition.

The cell also contains buffer gas that renders the atomic mo-
tion diffusive, yielding an average spin relaxation rate Γ = 58 s−1

that is limited by collisions with the walls (Materials and Methods).
We monitor the normalized macroscopic magnetization of the
vapor M using Faraday rotation measurements of off-resonant
probe light (21, 40).

The cesium vapor becomes magnetized in the experiment for
a range of collision rates J and optical pumping (spin alignment)
rates I. The spins then end up pointing either at the direction of
the magnetic field (M > 0) or opposite to it (M < 0), with the
sign varying randomly between experimental realizations. The
measured absolute magnetization of the vapor |M | at steady state
is shown in Fig. 2A as a function of the pumping power and colli-
sion rate, which are respectively proportional to I and J. We find
a well-defined region in which the spins are ordered and |M |> 0.
We reach a magnetization as high as |M |= 0.45 in the ordered
phase, where unity |M |= 1 corresponds to maximal magnetiza-
tion (all spins in the vapor maximally oriented along ±ẑ ).

For other values of I and J, the spins remain in a disordered
phase with vanishing net magnetization in each realization. In
Fig. 2 C and D, we present the magnetization as a function of
Γ/I and Γ/J along two contours crossing the phase bound-

Fig. 1. Experimental system and coupling scheme. (A) Cesium atoms con-
tained in a glass cell experience frequent local spin-exchange collisions and
are illuminated by linearly polarized pumping light. The pumping, with
rate I, aligns each spin symmetrically either parallel or antiparallel to the
magnetic field Bẑ. The collisions, with rate J, enable the generation of local
correlations that lead to the ordering of the spins at high densities. A weak,
far detuned, monitor beam is used to measure the total atomic magne-
tization along ẑ, which, after normalization, acts as the order parameter
M. For measurements of the magnetic susceptibility, an auxiliary, circularly
polarized, light beam is introduced to bias the optical pumping toward
positive M (σ̂+ bias beam) or negative M (σ̂− bias beam). (B) Atomic-level
structure. In the ẑ quantization basis, the pumping light comprises σ̂+ and
σ̂− components (red arrows). It does not excite the maximally polarized
states (blue triangle and green upside-down triangle, corresponding to M =

±1). In conjunction with spontaneous emission (orange arrows), the pump-
ing drives the unpumped atoms (|M| < 1, represented by a gray circle) sym-
metrically to both directions. (C) Illustration of the bifurcation mechanism
for two atoms. The coaction of symmetric optical pumping (driving a gray
circle to blue triangle and green upside-down triangle) and spin-exchange
collisions (allowing the pumping cycle to continue if the system arrives
at double upside-down green triangles or blue triangle and upside-down
green triangle) renders the maximally polarized states (double blue triangles
and double green upside-down triangles) the only basins of attraction.

ary (marked by dashed lines in Fig. 2A). We observe a critical
dependence of the magnetization near the transition between
the disordered and ordered phases. The continuous but sharp
transition of the magnetization, which acts as an order parameter,
indicates that the process is associated with a second-order phase
transition. The data fit well to power-law functions with critical
exponents βI = 0.53± 0.04 and βJ = 0.49± 0.02 (Materials and
Methods).

One might expect that the magnetization increases only with
the collision rate J. However, as clearly evident in Fig. 2A,
the magnetization decreases for large J, i.e., at elevated atomic
densities. This is a result of the attenuation of the pumping light
along the medium at high densities, which decreases the spatially
averaged spin-alignment rate below the critical value. Moreover,
even when the spin-alignment rate is high, the critical behavior
might be compromised by the large spatial inhomogeneity (along
the ŷ axis) due to this attenuation at elevated densities. Finally,
at high pump powers, off-resonant excitation of the maximally
polarized states becomes a dominant relaxation mechanism of
the magnetization. Together, these factors limit the parameter
range at which we expect to observe the phase transition in our
system. Nevertheless within a range of ±20% around the condi-
tions highlighted in Fig. 2, we find that the critical exponents vary
with SDs of σ(βI ) = 0.04 and σ(βJ ) = 0.06. These are extracted
from horizontal and vertical cuts of SI Appendix, Fig. S1E, which
takes into account the attenuation of the spin-alignment rate at
elevated densities.

To further explore the critical behavior near the boundary
between the two phases, we measure the dependence of the
magnetization on an external bias. The bias toward positive or
negative M is introduced by an auxiliary optical beam with circu-
lar polarization σ̂+ or σ̂−, respectively (Fig. 1A). The magnitude
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Fig. 2. Magnetic phase diagram and power-law dependence. (A) Measured steady absolute magnetization |M| of the gas as a function of the atomic
density and the power of the linearly polarized pumping light. The atomic density sets the local spin-exchange collision rate J, while the pumping power
sets the spin-alignment rate I. At moderate J and elevated I, the spins gain order and align either parallel or antiparallel to the magnetic field, manifesting
a macroscopic ordered phase. The presented data are linearly interpolated; the raw data are shown on a scatter plot in SI Appendix, Fig. S1 A and C. (B)
Simulated diagram using a nonlinear mean-field model (Materials and Methods). (C and D) Second-order phase transition, observed along the horizontal
(black) and vertical (white) contours in A. Shown is measured magnetization as a function of Γ/I (C, with J = 3.8Γ) and Γ/J (D, with I = 4.5Γ), where Γ is
the average spin-relaxation rate. We fit the data to a power law (black line) and find the critical exponents βI = 0.53 ± 0.04 and βJ = 0.49 ± 0.02 (Materials
and Methods).

of the bias is given by the optical pumping rate H, which is linear
in the bias beam’s intensity. In Fig. 3A, we present the steady
absolute magnetization as a function of H /Γ near the phase
boundary at (I , J ) = (1.5, 2.3)Γ (orange circles) compared with
the disordered phase at (I , J ) = (0, 2.3)Γ (blue circles). In the

A

B

Fig. 3. Critical behavior in the presence of a weak external bias. (A)
The magnetization as a function of the bias strength, quantified by the
optical-pumping rate H induced by an auxiliary, circularly polarized beam.
The spin-exchange rate J = 2.3Γ is fixed. For I = 0 (disordered phase) the
magnetization increases linearly with the bias (blue circles), as expected for
standard optical pumping of spins. In contrast, for the critical value I = 1.5Γ
at the phase boundary, the system becomes critical and the magnetization
sharply increases (orange circles). Solid lines are fits to linear (blue) and
power-law (orange) functions, the latter providing the critical exponent
δ = 2.65 ± 0.09. (B) The susceptibility to an external bias dM/dH (purple
circles), diverging near the phase boundary (gray area). The fit to a divergent
power law (black line) provides the critical exponent γ = 0.94 ± 0.10 for the
disordered phase.

disordered phase, the steady magnetization is determined by
M = H /(H + Γ) and, for a weak bias, grows linearly as M ≈
H /Γ (blue line). Importantly, the linear dependence of the
magnetization on the bias beam’s intensity is a universal prop-
erty of weak resonant optical pumping of uncorrelated atoms,
independent of the transition strength or the particular atomic
species. In contrast, near the phase boundary, we find a critical
dependence of the magnetization on the bias beam, with a much
sharper response. We fit the data to the power-law function M =

(H /Γ)1/δ and find the critical exponent δ = 2.65± 0.09. The
deviation from the standard optical-pumping relation indicates
the emergence of correlations between the atoms.

Next, we measure the susceptibility function χ= dM /dH near
H = 0, which determines the response of the system to a small
external bias. Fig. 3B presents χ as a function of I at J = 2.3.
We observe a striking increase of the susceptibility by more than
an order of magnitude near the phase transition. Fitting χ to a
divergent power-law function, we find the critical exponent γ =
0.94± 0.10 (Materials and Methods). The power-law dependence
of the magnetization and the divergence of the susceptibility near
the phase boundary testify for the critical behavior of a magnetic,
second-order phase transition.

Second-order phase transitions exhibit critical, scale-invariant
behavior even out of equilibrium. Here we explore the dynamical
transition from a disordered to an ordered phase by temporally
varying I in a pulsed waveform. We add no bias and use a fixed
J = 3.7Γ, for which the critical value of I is 1.6Γ. For I > 1.6Γ,
a magnetization initially at M = 0 builds up to a finite steady
value, randomly in either of the two directions. Fig. 4A shows
an example of the measured magnetization subject to a periodic
sequence of pumping pulses (gray areas) tuned slightly above I =
1.6Γ. We observe a slowdown of the polarization process, with an
average response time of τ = 7.8± 1.3 s. Between the pumping
pulses (white areas), the magnetization rapidly vanishes, with a
decay rate corresponding to the spin lifetime in the dark (T1 =
17 ms at that temperature), as shown in Fig. 4B. Importantly,
as absorption of photons contributes to the spin relaxation, the
response time of uncorrelated spins by resonant optical pumping
is always shorter than their lifetime in the dark, T1. In contrast,
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Fig. 4. Critical slowdown out of equilibrium. (A) Measured magnetization in response to optical-pumping pulses, with I = 1.6Γ and J = 3.7Γ close to
the phase boundary. During the pumping on times (gray shaded areas), the magnetization builds up to |M| � 0.025 in a random direction, at an average
response time of τ = 7.8 ± 1.3 s (time for the magnetization to reach 63% of its steady value). (B) During the off times, the system becomes disordered, and
|M| rapidly decays with the standard spin lifetime T1 = 17 ms. The data shown in B are marked by a green arrow in A. (C) Divergence of the spin response
time near the phase boundary and a fit to a power-law divergence (black line). Blue points are data obtained along the horizontal (dashed) contour in
D, as a part of an automatic 40× 330 measurement, whereas the red point corresponds to the data in A, obtained by manually fine-tuning around the
critical point. The bound τ � T1, valid for uncorrelated spins, is violated by a large factor. (D) Measured spin response time in a logarithmic scale. The
divergence appears at the phase boundary, where the spins are strongly correlated. The presented data are linearly interpolated; the raw data are shown in
SI Appendix, Fig. S1 B and D. (E) Simulated spin-response time using a nonlinear mean-field model (Materials and Methods). (F) Measured slowdown of spin
relaxation near the phase transition. At t = 0, we switch from a strong circularly polarized pumping to a weak linearly polarized pumping, the latter with
an intensity slightly below its critical value. The relaxation is substantially slower (solid blue line) than the standard relaxation in the dark (dashed orange
line). These preliminary data indicate a ninefold slowing down of the collective spin relaxation.

here near the phase boundary, τ becomes longer than T1 by
a remarkable factor of 460. The observed response time varies
between the pulses due to the critical nature of the phenomenon,
and nevertheless it is always at least two orders of magnitude
larger than T1.

The slowdown of the spin response time is a critical phe-
nomenon associated with the phase transition. Fig. 4C shows the
dependence of τ on I along the contour J = 3.7Γ crossing the
phase boundary (dashed line in Figs. 2A and 4D). We observe
a divergence of τ near I = 1.6Γ and find the critical exponent
zν = 0.86± 0.07 by fitting to a divergent power-law function
(Materials and Methods). The critical exponent varies with a SD of
σ(zν) = 0.13 within a range of ±20% around J = 3.7Γ. The spin
response time diverges at the entire phase boundary, as shown in
Fig. 4D. The observation of a critical divergence of the response
time (Fig. 4D) near the boundary of the ordered phase (Fig. 2A)
attests to the collective nature of the phase transition.

Finally, in addition to the elongation of the spin buildup time
discussed above, one expects near the phase transition boundary
an elongation of the spin relaxation time. We explore this by
first initializing the spins in the ordered phase (using a strong
circularly polarized beam) and subsequently monitoring the spin
relaxation in the presence of a linearly polarized light slightly
below the phase transition, i.e., in the disordered-phase region
near the phase boundary. We compare the relaxation near the
phase boundary (Fig. 4F, solid blue line) to the standard relax-
ation away from the boundary (Fig. 4F, dashed orange line).
Fitting the data to a decaying exponent, we find that the slowed-
down relaxation time τ = 165± 14 ms is longer by a factor of
9 than the lifetime in the dark T1 = 18.3± 0.1 ms at the same
temperature.

To model the observed phenomena, we employ a nonlinear
mean-field model that describes the evolution of the density ma-
trix of the mean cesium spin in the vapor. The theoretical model,
described in Materials and Methods, captures the main features
of the emergent phase transition, including the bistability, the
power-law dependencies, and the divergence of the susceptibility
and the spin response time. In Figs. 2B and 4E, we present

the numerically calculated phase diagram and the spin response
time, which agree with the measured results reasonably well.

Discussion
In summary, we observe a magnetic phase transition of warm ce-
sium atoms stimulated by linearly polarized light and by frequent
spin-exchange collisions. We characterize the phase diagram,
reveal a critical power-law behavior near the phase transition,
and observe a critical slowdown of the spin response time. The
substantial deviation of our observations from standard exper-
iments, in which the atoms are uncorrelated, testifies for the
collective nature of the ordered phase and the transition.

This work opens additional avenues for studying correlated
phases in gaseous systems at ambient conditions. First, it is
remarkable that a simple optical driving affecting each spin
independently renders the interparticle interactions dominant
over the gas entropy, resulting in an emerging correlated phase.
It would be interesting to explore optical-driving techniques that
can enhance this dominance further in various atomic and molec-
ular gases, potentially resulting in correlated phases at elevated
temperatures. Engineering the range of interactions between the
spins is a second avenue, which could lead to nontrivial spatial
correlations in the gas and potentially to the formation of spatial
domains, e.g., via the Kibble–Zurek mechanism. The critical
exponents we measured fall into the universality class of mean-
field models (1) (Table 1) due to rapid diffusion of the atoms.
In our system, the atoms diffuse on a short time scale (∼T1),
thus enabling spin-exchange interaction between initially distant
atoms and effectively rendering the range of the interaction long.
Slowing down the diffusion (e.g., by increasing the buffer-gas
pressure) can reduce the interaction range. In condensed-matter
systems, irradiation by a strong optical drive can lead to the
emergence of nonequilibrium and transient phases, possibly with
a topology set by the orbital angular momentum or polarization
of the drive (41–43). The polarized driving light we use here is
orders of magnitude weaker, enabling continuous operation, and
it would be interesting to explore potentially nontrivial topologies
using similar approaches. A third avenue can exploit the long-
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Table 1. Measured critical exponents compared with the expo-
nents of the mean-field universality class

Exponent Measured value Mean-field value Relation

βI 0.53 ± 0.06 0.5 M ∝ I−βI

βJ 0.49 ± 0.06 0.5 M ∝ J−βJ

δ 2.65 ± 0.09 3 M ∝ H1/δ

γ 0.94 ± 0.10 1 dM/dH ∝ Iγ

zν 0.86 ± 0.15 1 τ ∝ I−zν

Simplified power-law relations near the phase boundary are presented for
context, with M denoting the magnetization, I the optical spin-alignment
rate, J the spin-exchange collision rate, H the bias pumping rate, and τ
the dynamical response time. Full expressions of the critical functions are
given in Materials and Methods. The fits of the power-law functions in
a logarithmic scale are presented in SI Appendix, Fig. S2. The noted errors
include the fitting uncertainty to the power law and, for βI, βJ, and zν, also
the SD of the mean values within the analyzed parameter range.

spin coherence of the gas to explore other possible nonequi-
librium phases. For example, a periodic variation of the mag-
netic field combined with the effectively long-range interaction
between the spins can potentially make the system resilient to
disorder (e.g., in the magnetic field or the beam intensity) and
drive the system into a time-crystalline phase.

The platform can potentially be utilized in applications such
as sensing and spin simulators. Warm atomic spins are useful
sensors as they strongly couple to light and have long coherence
times (up to hundreds of milliseconds) and a large number of
particles at or above room temperature (44). These sensors often
measure the response of the spins to small external fields using
optical means. Divergence of the spins’ response to external fields
near the phase boundary can considerably enhance the signal
over the noise up to the standard quantum limit (which is typically
hard to reach). For example, the critical behavior observed in
Fig. 3 enables enhanced detection of the optical polarization and
circularity of the beam with respect to a standard measurement
in a disordered phase. Furthermore, longer spin lifetimes often
improve the performance of spin sensors, both in transient and
in steady-state operations (45). Therefore, the elongation of
the spin lifetime near the phase boundary, which is optically
controllable, can potentially improve sensing performance.

Simulation of complex many-body phenomena and computa-
tion of optimization problems utilize various platforms, such as
ultracold atomic gases and coupled laser arrays. These simulators
consist of a network of spins, whose evolution under a con-
trollable interaction Hamiltonian is studied. The platform can
be employed in several configurations for constructing efficient
networks in a relatively simple setup at room temperature. One
configuration can use a large but thin vapor cell, illuminated
by a wide beam whose optical polarization is spatially modu-
lated. In such a network, spin exchange and diffusion lead to
interaction between neighboring domains, each initialized in a
correlated ordered phase, whereas the light modulation enables
local engineering of the desired interaction Hamiltonian. Other
configurations can use arrays of miniature cells, each acting as
a single computational spin, and an array of optical beams for
the network linkage, exploiting the strong bidirectional coupling
between spins and light that is enhanced near the phase bound-
ary. The long spin lifetimes of this platform could be particularly
interesting in simulations of out-of-equilibrium phenomena such
as anomalous thermal relaxations in magnetic systems (46–50) as
well as in computation of a wide class of optimization problems
(51–53).

Materials and Methods
Detailed Experimental Setup. We use a cubic borosilicate glass cell of length
L = 15 mm containing cesium vapor and a buffer-gas mixture of N2 and
neon, 16.5 Torr each. These gases slow down the diffusion of cesium
atoms to the cell walls, and the N2 additionally enables the nonradiative

decay (quenching) of electronically excited cesium atoms. The buffer gases
broaden the cesium optical lines to γc = 137 MHz (half width at half max-
imum), yet the four optical transitions Fg = {3, 4} → Fe = {3, 4} of the D1

line remain resolved. We heat the cell using high-frequency electrical current
at 390 kHz flowing through high-resistance twisted-pair wires in a custom
oven. We control the magnetic field in the cell using three pairs of Helmholtz
coils and set a constant magnetic field of B = 1 G along ẑ. The coils are
located within four μ-metal layers, shielding the cell from external magnetic
fields.

The linearly polarized pumping beam originates from a free-running dis-
tributed Bragg reflector (DBR) diode laser at 895 nm. The laser frequency is
blue detuned by Δ = 700 MHz from the Fg = 3 → Fe = 4 optical transition.
We control the beam power using a commercial noise eater consisting of
a liquid crystal, a polarizing beam splitter, and a photodetector. The beam
then passes through a mechanical shutter and a high-quality linear polarizer,
which sets the polarization of the beam to be linear along x̂, and finally
through a λ/4 waveplate mounted on a precision, computer-controlled
rotating mount. For most of the experiments, the fast axis of the waveplate
is carefully aligned with the direction of the linear polarization, unaffecting
the linear polarization of light. Nevertheless, when needed, rotation of the
waveplate enables rapid calibration of the maximal magnetization within
the experimental sequence (as detailed below). The Gaussian beam is then
expanded to a 1/e2 radius of 1 cm to cover the entire cell area and enter the
cell in the ŷ direction. We measure the magnetization in a set of 330 × 40
measurements varying the vapor density in the range of 7 × 1011 cm−3 ≤
n ≤ 5 × 1013 cm−3 and the optical intensity of the pumping field in the
range of 2 mW ≤ Φ ≤ 40 mW.

We monitor the magnetization using a ŷ-polarized, 3-mW probe beam
that propagates along ẑ. The beam originates from another free-running
DBR diode laser at 895 nm. It has a Gaussian profile with 1/e2 radius of
1.5 cm, covering much of the atoms in the cell. The beam is blue detuned
by 100 GHz from the D1 lines to avoid photon absorption. It probes the
z component of the electron spin of the gas via Faraday rotation. The
beam then goes into a balanced polarimetry setup, which outputs a signal
proportional to the magnetization along ẑ.

The bias beam originates from a third free-running DBR diode laser at
895 nm, whose power is controlled by an acousto-optic modulator and a
commercial intensity noise eater. A λ/4 waveplate renders the polarization
of the beam circular, and it is combined with the probe beam using a
nonpolarizing beam splitter, as shown in Fig. 1. The beam has a Gaussian
profile with 1/e2 radius of 1 cm. It is 1.2-GHz blue detuned from the Fg =

3 → Fe = 4 transition for the critical behavior experiments, and it is set to
resonance with the Fg = 4 → Fe = 3 for calibration experiments.

Our measurements are found sensitive both to the detuning of the
pumping beam and to the magnitude of the magnetic field. Drift in the
detuning predominantly affects the rate I, while drift in the magnetic field
was found to vary the spin response time. Therefore, both quantities are
monitored and kept constant during the experiment.

Experimental Calibrations. The spin lifetime T1 = 1/Γ is determined by mea-
suring the decay rate of spins oriented along the magnetic field in the
absence of resonant optical fields (measurement in the dark). In this mea-
surement, the spins are first optically pumped by two circularly polarized
beams resonant with the Fg = 3 → Fe = 4 and Fg = 4 → Fe = 3 transitions
along ŷ, then rotated to the ẑ axis by a magnetic field pulse, and finally
measured with the off-resonant probe while the pumping beams are off.
The relaxation rate has a small, linear dependence on the cell’s temperature,
satisfying Γ(T) = Γ0 + 0.35(T [◦C] − 75) in the tested range (55 to 120 ◦C),
predominantly due to the temperature dependence of the diffusion coeffi-
cient of the cesium atoms. In the entire analysis and Figs. 2–4, we use the
constant value Γ = Γ0 = 58 s−1. Furthermore, in the measured and simu-
lated response-time data (Fig. 4 D and E), we set τ = T1 for all measurements
where the spin response was smaller than 10−3 of the maximal measured
magnetization.

The spin-alignment rate I is independently determined by measuring the
excess decay rate of the spins in the presence of the pumping beam at
T = 75 ◦C. We find a linear dependence on the intensity of the beam Φ,
with a ratio I/Φ = 457 cm2/J. Note that the local spin-alignment rate varies
across the profile of the pumping beam, and therefore we always refer to
an average rate across the beam. The pumping beam is also attenuated
along the propagation direction (ŷ) due to absorption by the atoms. The
y-dependent spin-alignment rate is therefore given by I exp(−nσey), where
n(T) is the vapor density and σe(Δ) is the absorption cross-section of the
beam.

The spin-exchange rate J(T) is independently determined by a measure-
ment of the relaxation of the spins transverse to the magnetic field, in the
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absence of resonant optical fields. In this measurement, we weakly pump the
spins along ŷ, apply a magnetic field B along x̂, and monitor the precession
of the spins, decaying at a decoherence rate Γ2(B). At each temperature, we
determine the spin-exchange rate J = [Γ2(B) − Γ2(0)]/q from the measured
relaxation at high magnetic field B = 2 G and by subtracting the effect
of other field-independent relaxations Γ2(0) (26, 54). Here q = 4.57 is the
numerical slowdown factor that accounts for the reduction of the rate by
coupling to the nuclear spin I = 7/2 (26).

The bias rate H is independently determined by measuring the mag-
netization as a function of the intensity ΦH of the bias (circularly polar-
ized) beam. We fit the measured magnetization to the function M = aΦH/

(aΦH + Γ) with a = 1.179 ± 0.005 and determine the linear coefficient
H/ΦH = 99 cm2/J.

As we increase the temperature of the cell to increase J, the vapor density
and therefore the number of gaseous spins in the cell increase as well. We
thus calibrate for the maximal polarization of the vapor at each temperature
to properly determine the magnetization M, which describes the portion of
polarized spins in the gas. For that, we use two strong circularly polarized
beams that cover the entire cell and optically pump the spins along ŷ.
We then turn the beams off and apply a magnetic field along Bx that
stimulates the precession of the spins. The precession amplitude corresponds
to the maximal signal obtained by our probe beam, which is identified as
the maximal polarization and used to calibrate the magnetization in the
experiments.

The residual circularity of the polarization of the pumping field is auto-
matically zeroed within each experimental sequence by applying the same
technique as in the spin-exchange rate J(T) calibration for varying λ/4
waveplate angles around the known optimal point. Since the waveplate
is mounted on a precision, computer-controlled rotating mount, we auto-
matically repeat this process until the procession amplitude is minimal. This
ensures the beam has a minimal circular polarization.

Critical Behavior. Near the phase boundary, the data exhibit power-law
dependence with critical exponents. Here we describe the fitting procedure
we use to determine these exponents.

We determine the critical exponent βI by fitting the data in Fig. 2C to the
functions M(I > I0) = M0(1 − I0/I)βI and M(I < I0) = 0. For proper fitting,
we first estimate the initial guess for I0 and βI by fixing the value of one
parameter and fitting for the other and use those results for the final fit.
For J = 3.8Γ (black horizontal dashed line in Fig. 2A), we find the critical
exponent βI = 0.53 ± 0.04 and the critical spin-alignment rate I0 = 1.639 ±
0.006Γ. Similarly, we determine the critical exponent βJ by fitting the data in
Fig. 2D to the functions M(J > J0) = M0(1 − J0/J)βJ and M(J < J0) = 0. For
I = 4.5Γ (white vertical dashed line in Fig. 2A), We find the critical exponent
βJ = 0.49 ± 0.02 and the critical spin-exchange rate J0 = (2.393 ± 0.004)Γ.

We determine the critical exponent γ by fitting the measured susceptibil-
ity in Fig. 3B to the function χ = χ0(I0/I − 1)−γ in the disordered phase for
I < I0. As with the critical exponent β fitting, we first estimate the initial
guess for I0 and γ by fixing the value of one parameter and fitting for
the other and use those results for the final fit. We also exclude points
that are close to the maximal measured one and use weights w = (Γ/I)3

to compensate for the finite values of the data around the critical point
compared with the divergent values of the model. For J = 2.3Γ, we find
the critical exponent γ = 0.94 ± 0.10 and the critical spin-alignment rate
I0 = 1.393 ± 0.036Γ in the disordered phase.

We determine the critical exponent zν by fitting the spin response time
τ in Fig. 4C to the power-law function τ = τ0(1 − I0/I)−zν . We fit the
functions to 11 measurements in the range of exchange rates J = 3.47 to
3.96 Γ (equivalent to T = 87 ± 1 ◦C) to comprehend the deviation of the
model parameters. As before, we use a three-step fitting scheme, exclude
points that are close to the maximal measured one, and use weights.
We then find the critical exponent zν = 0.86 ± 0.07 and the critical spin-
alignment rate I0 = 1.599 ± 0.004Γ.

Spin Alignment by Linearly Polarized Light. The linearly polarized pumping
light resonantly interacts with the optical transition Fg = 3 → Fe = 4. As the
electric field is perpendicular to the magnetic field, upon absorption of a
photon, the atom is excited and its spin projection along the magnetic field
mF changes by either +1 or −1. Importantly, this interaction preferably
increases the absolute spin projection |mF | (37). An atom with mF > 0 would
preferably be excited while increasing its spin to mF + 1, and, symmetrically,
an atom with mF < 0 would preferably decrease its spin to mF − 1. This
preference is quantified in Table 2, which presents the probability for chang-
ing the ground-level spin projection by absorption of a linearly polarized
photon. The on-average increase of |mF | drives the spins toward either
mF = 4 or mF = −4, thus generating symmetric alignment.

Table 2. Transition probabilities for changing the spin projection
|mF | of cesium atoms in Fg = 3 upon absorption of the pumping
beam

|mF | p|mF|→|mF|+1 p|mF|→|mF|−1 Δp

0 1/2 1/2 0
1 15/21 6/21 9/21
2 7/8 1/8 6/8
3 28/29 1/29 27/29

The pumping tends to increase |mF |, as indicated by the positive Δp =
p|mF |→|mF |+1 − p|mF |→|mF |−1, thus driving the spins toward the maximally

polarized states mF = ±4 in Fg = 4.

Theoretical Model. We implement a mean-field model describing the dy-
namics of the mean density matrix ρ̄ of a single atom in the vapor, following
the model by Happer et al. (21). The density matrix

ρ̄ =

(
ρ̄e ρ̄eg

ρ̄ge ρ̄g

)
[1]

consists of the 16 spin states in the ground level Fg = {3, 4} denoted by ρ̄g,
the 16 spin states in the excited level Fe = {3, 4} denoted by ρ̄e, and the
optical-coherence matrices between the two ρ̄ge and ρ̄eg. We describe the
evolution of the density matrix by solving the nonlinear Liouville equation

∂t ρ̄ = −
i

�

[
H + VL, ρ̄

]
+ L(ρ̄). [2]

H = Hg + He is the spin Hamiltonian of an alkali atom. Both ground (Hg)
and excited-level (He) Hamiltonians consist of the hyperfine interaction AI · S
and the interaction with a magnetic field, predominantly of the electron
spin gB · S. Here S denotes the electronic spin operator and I denotes the
nuclear spin operator. We use A = 2.3 GHz and g = 2.8 MHz/G in Hg, and
we use A = 290 MHz and g = 0.9 MHz/G in He. The second term in Eq. 2
describes the atom–photon interaction VL = −E · D, coupling the oscillating
electric field of the optical pumping field E = E0ei(k·v−ω t) with the atomic
dipole operator D. The term k · v denotes the Doppler shift due to the finite
velocity v of that atom. The third term L(ρ̄) describes the coupling of the
spins to other degrees of freedom via radiative or collisional channels in the
ground Lg(ρ̄) and excited levels Le(ρ̄), as well as dephasing of the optical
coherences at a rate γc.

Rapid collisions with buffer-gas atoms increase γc significantly (pressure
broadening) with respect to both the spontaneous emission rate and the
Rabi frequency of the optical pumping fields. In a frame rotating near
the light frequency at a detuning Δ, the optical coherence ρ̄eg is hence
maintained in a quasi-steady state, satisfying ρ̄eg = wρ̄g − ρ̄ew. The oper-
ator w =

〈
E−1(E0 · D)

〉
v denotes the fraction of optical coherence, with

E = He − Hg + �(k · v − Δ − iγc) accounting for the optical detuning and
dephasing of the different transitions. The operation

〈〉
v

denotes thermal
averaging using the Maxwell–Boltzmann distribution, to properly account
for Doppler broadening of the optical transition.

Atoms in the excited level experience rapid relaxation, which we model
by

Le(ρ̄) = −γqρ̄e − γp
(

3
4 ρ̄e − Sρ̄eS

)
. [3]

The first term denotes deexcitation (quenching) of the population from the
excited level to the ground level at a rate γq, including both spontaneous
emission and collisions with N2 molecules. The second term describes the
destruction of the electron spin in the excited-level manifold by collisions
with buffer-gas atoms at a rate γp. As an approximation, our numerical
calculation assumes a quasi–steady-state solution of ρ̄e in Eq. 2, which
adiabatically follows the dynamics of the ground-level density matrix ρ̄g.
We then numerically solve only the dynamics of the density matrix ρ̄g.

The dynamics of the ground-level density matrix ρ̄g are modeled by

Lg(ρ̄) =
2γq
3D2 D†

ρ̄eD − Γ
(

3
4 ρ̄g − Fρ̄gF

)
[4]

− qJ
[

3
4 ρ̄g − Sρ̄gS + M · (ρ̄gS + Sρ̄g − 2iS × ρ̄gS)

]
.

The first term describes the repopulation of the ground level by quenched
excited atoms, where D is the amplitude of the dipole moment of the optical
transition. The second term describes the destruction of the total spin F =

I + S at a rate Γ, predominantly due to diffusion to the cell walls. The last
term describes the effect of spin-exchange collisions, affecting the electron
spin at a rate qJ. Importantly, the spin-exchange interaction has a nonlinear
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(quadratic) dependence on the density matrix, since the magnetization
of the vapor is given by M = Tr(ρ̄gS). The quadratic dependence enables
the emergence of bistable steady solutions and manifests the correlations
induced by different atoms via the exchange interaction. It is therefore
crucial for the emergence of the ordered phase and the observed critical
phenomena.

We numerically calculate the steady state and the buildup of the mag-
netization of the vapor by solving Eqs. 2–4 using an initially unpolarized
state. We use γc = 1.86 GHz, γp = 219 MHz, γq = 265 MHz, q = 4.57, Δ =

700 MHz, and Γ(T) = Γ0 + 0.35(T [◦C] − 75) to model the parameters of
the experiment (21). We run the simulation for a range of 70 vapor
densities 7 × 1011 cm−3 ≤ n ≤ 5 × 1013 cm−3 and 270 optical intensities
2 mW ≤ Φ ≤ 40 mW. In terms of the model parameters, the effective rates
used in the main text are given by J = n〈σexv〉v and I = s E2

0 exp(−OD).
Here 〈σexv〉v = 7 × 10−10 cm3 s−1, s = 220 MHz (mW/cm2)−1, and the op-
tical depth OD = nσeL is given by the measured value at each vapor
density.

To alleviate the numerical complexity of the model, we zero the rapidly
oscillating hyperfine coherences of ρ̄g at every step of the simulation. This

approximation corresponds to the rapid decay of these coherences due to
spin-exchange relaxation in the experiment. In the simulations presented
in Figs. 2B and 4E, we further zero the Zeeman coherences of ρ̄g at every
step of the simulation to speed up the calculation. Indeed, in practice, spin-
exchange collisions at a large magnetic field partially relax these coherences.
We demonstrate in SI Appendix, Fig. S3 that the effect of these coherences
is limited to variations of the spin response time at the phase boundary at
lower densities.

Data Availability. All study data are included in this article and/or
SI Appendix.
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