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Noble-gas spins feature hours-long coherence times, owing to their great isolation from the environment,
and find practical usage in various applications. However, this isolation leads to extremely slow preparation
times, relying on weak spin transfer from an electron-spin ensemble. Here we propose a controllable
mechanism to enhance this transfer rate. We analyze the spin dynamics of helium-3 atoms with hot,
optically excited potassium atoms and reveal the formation of quasibound states in resonant binary
collisions. We find a resonant enhancement of the spin-exchange cross section by up to 6 orders of
magnitude and 2 orders of magnitude enhancement for the thermally averaged, polarization rate coefficient.
We further examine the effect for various other noble gases and find that the enhancement is universal. We
outline feasible conditions under which the enhancement may be experimentally observed and practically
utilized.
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Spin-polarized noble gases are unique systems that can
maintain their spin state for hours, even at room temper-
ature. They have utility in various applications, including
precision sensing [1–4], medical imaging of the brain and
lungs [5–9], neutron scattering experiments [10,11], the
search for dark matter, physics beyond the standard model
[12–15], and potentially in quantum information applica-
tions, including the generation of long-lived entanglement
[16–20].
The great isolation of noble-gas spins from the environ-

ment sets a trade-off between their spin-polarization rate
and their spin lifetime. The primary polarization processes
for noble-gas spins rely on spin changing collisions with
other atoms whose spins can be optically manipulated, such
as metastable excited noble gases [21–27] or alkali vapor in
the ground state [28–32]. While both processes are practi-
cally useful, the former approach is mostly useful for
helium and relies on electrical discharge, which constantly
generates plasma. The plasma limits both spin lifetime and
the fraction of optically accessible atoms [10], thus narrow-
ing the applicability and hindering miniaturization of this
approach.
Collisions with alkali atoms benefit from higher possible

densities and longer spin lifetimes. It can be applied to all
noble gases and miniaturized to a greater extent [2]. Here,
the polarization rate is determined by collisions of alkali
and noble-gas pairs, illustrated in Fig. 1. While heavy noble
gases can be polarized quickly, their spin lifetime is
considerably shorter than light noble gases. 3He, in par-
ticular, exhibits the longest spin lifetime but also the
weakest coupling to alkali spins, rendering its polarization

rate extremely slow. At typical conditions, 3He polarization
takes many tens of hours, limiting its utility.
In cold atomic and molecular gases, interaction during

collisions can be greatly enhanced by quantum Feshbach or
tunneling resonances [33–43]. Tunneling resonances pro-
long the interaction time via the formation of quasibound
states at particular values of the kinetic energy. At room
temperature and above, however, the collision dynamics
comprise many tens of partial waves, the atoms follow a
thermal energy distribution, and measured cross sections

FIG. 1. Enhancement of spin-polarization rate via quantum
tunneling resonances. (a) Alkali atoms and noble-gas atoms
experience frequent spin-exchange collisions. At room temper-
ature, the quantum nature of atomic motion, such as tunneling
resonances, is obscured. (b) Spin exchange in a short binary
collision between a ground-state alkali atom and a noble-gas
atom. The probability of spin exchange per collision is extremely
small, resulting in slow spin-polarization rate. (c) Resonant spin
exchange between an electronically excited alkali atom and a
noble-gas atom. In resonant collisions, a quasibound state is
formed and interaction time is increased by orders of magnitude,
significantly enhancing the probability of spin exchange.
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attain their classically predicted values [31,44]. It is there-
fore generally assumed that quantum resonances at ambient
conditions would be negligible, and consequently, their
potential application for noble-gas polarization has never
been considered.
Here we propose a new mechanism to enhance the pola-

rization rate of noble-gas spins by resonant collisions with
electronically excited alkali atoms. We solve the quantum
scattering problem of 3He colliding with electronically
excited potassium and reveal tunneling resonances in binary
collisions [45–48]. We calculate the spin-polarization rate
coefficient and find 2 orders of magnitude enhancement
driven by the resonances and up to 6 orders of magnitude
enhancement of the spin-exchange cross section at specific
resonance energies. We analyze the application of this
mechanism to other alkali and noble-gas pairs and find
universal enhancement. Finally, we outline the conditions
under which the enhancement may be experimentally
observed and practically utilized.
We start the analysis by solving the quantum scattering

of alkali and noble-gas pairs. We then consider the energy-
dependent elastic and spin-exchange cross sections and
finally calculate the thermally averaged rate coefficient of
the ensemble.
We describe themotion of the pair during a collision using

the Born-Oppenheimer approximation, separating the nu-
clear and electronic degrees of freedom. The Hamiltonian
for the relative motion of the nuclei is given by

H ¼ −
ℏ2

2μ

∂2

∂R2
þ ℏ2L2

2μR2
þ VðRÞ þ ℏαðRÞI · S: ð1Þ

The first two terms describe the kinetic energy, where R
denotes the internuclear distance, L2 denotes the rotational
angular momentum of the relative motion of the nuclei with
eigenvalues lðlþ 1Þ, and μ denotes the reduced mass of the
pair. The third term VðRÞ describes the spin-independent
potential energy curve (PEC), and the last term is the spin-
dependent interaction, dominated by the isotropic Fermi
contact term [32]. This interaction is responsible for the
spin-polarization transfer from the electronic spin of the
potassium atom S to the nuclear spin of the helium I via
the hyperfine-coupling coefficient αðRÞ.
We calculate the ab initio values of VðRÞ and αðRÞ for

the K-3He complex as shown in Fig. 2(a) for the X2Σð4SÞ
ground state and 2Σ excited states. The wave functions of
the isolated K atom and the K-3He complex are constructed
hierarchically. First we solve the restricted Hartree Fock
equations for the ðK-3HeÞþ cation (a closed shell system
that serves as a reference function). We then refine the
results by introducing correlations using the equation-of-
motion coupled-clusters method at the singles and doubles
level of theory. Finally, the valence electron is added via
electron attachment [49,50]. The calculations are pre-
formed via the electronic-structure package Q-CHEM [51],

with VðRÞ and the electronic wave function jΨðRÞi as
outputs, where the latter is used to calculate αðRÞ directly
[32,52]. Comparison with Ref. [53] for validation and the
results for the first dozen excited states are provided in the
Supplemental Material [54].
For collisions of helium and potassium in the ground

state, the X2Σð4SÞ potential is purely repulsive and supports
no bound or quasibound states. In contrast, the excited-state
2Σð5SÞ potential exhibits a potential well preceded by a
barrier. The barrier is significant even for s-wave collisions
(l ¼ 0), in the absence of a centrifugal potential. These
wells and barriers give rise to bound states (E < 0) and
quasibound states [45,46] (E > 0) as shown in Fig. 3(a).
The wave functions of both the bound and quasibound
states (square-integrable rovibrational solutions) were
obtained by the method of complex scaling [45] and are
presented superimposed on the PEC.
To quantify the contribution of the quasibound states to

the polarization rate, we solve the quantum scattering
problem via the method of Siegert pseudostates [67], which
is suitable for single-channel problems. We exploit the
symmetry of ℏαðRÞI · S in Eq. (1), which is diagonal with
respect to the joint angular momentum operator J2 ≡
ðIþ SÞ2 with eigenvalues jðjþ 1Þ, and solve the scatter-
ing of the singlet and triplet channels independently.
For each single-channel problem, we use N ¼ 200 basis

functions (Jacobi polynomials [68]) to discretize the

(a)

(b)

FIG. 2. Potential energy curves and hyperfine-coupling coef-
ficient for helium-3 and electronically excited potassium. (a) PEC
of the K-3He complex, corresponding asymptotically to the
helium atom in its ground state and to the potassium atom in
its 4S ground state or its 5S electronically excited state. The
ground-state potential (red) is purely repulsive, whereas the
excited state (orange) exhibits a potential well and a barrier.
(b) Hyperfine-coupling coefficient αðRÞ. The sign of αðRÞ simply
indicates the precession direction of the spins.
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problem and construct a matrix representation of Eq. (1).
We truncate the problem at a ¼ 40a0, explicitly approxi-
mating VðRÞ ≈ 0 for R > a, having verified convergence.
Diagonalization of this matrix yields a discrete set of
complex wave numbers kn;l;j associated with all incoming
and outgoing collision states, including the long-lived
tunneling resonances. To account for shortening of the
resonance lifetimes by other processes, we introduce a
relaxation rate γ into the calculation by k̃n;l;j ¼ Reðkn;l;jÞþ
i½Imðkn;l;jÞ − γ=jkn;l;jj�, where γ describes the external
dissociation rate. We model γ ¼ γ0 þ ap to account for
spontaneous emission at a typical rate γ−10 ≈ 10 ns and for
collisions with background atoms at characteristic pressure
p at room temperature. While the molecular dissociation
rate of stable alkali-noble-gas molecules in the S manifold
is about 1 MHz=Torr [69], here we consider a more
stringent rate that bounds the dissociation rate of quasi-
bound molecules due to collisions with a second helium
atom. As the charge density of helium is strongly localized,
perturbations to the resonance states can occur only when
the second helium atom overlaps with the K-3He wave
function, at most 5 Å from its center, yielding a≲
σhard spherev ¼ 25 × 2πMHz=Torr. The partial scattering
amplitudes are then given by [67]

SjlðEÞ ¼ e−2i
ffiffiffiffi
2E

p
a
Y2Nþl

n¼1

k̃n;l;j þ
ffiffiffiffiffiffi
2E

p

k̃n;l;j −
ffiffiffiffiffiffi
2E

p ; ð2Þ

and the quantum spin-exchange cross section is given by
the sum

σðqÞse ðEÞ ¼ π

8E

X

l

ð2lþ 1ÞjS1l − S0l j2: ð3Þ

We present the spin-exchange cross section in Fig. 3(b)
for collisions of ground- (red) or excited-state (orange)
potassium with a lifetime limit of γ−1 ¼ 1 ns correspond-
ing to 7 Torr of 3He. The 5S state exhibits considerable
increase at sharply defined peaks at specific resonant values
of the kinetic energy. To highlight the role of these reso-

nances, we first compare σðqÞse with the semiclassical
estimate of Ref. [70], as shown in Fig. 3(b) (gray) and
given by

σðcÞse ðEÞ ¼ π

2

Z
∞

0

bdb

�
�
�
�

Z
∞

−∞
α(RðtÞ)dt

�
�
�
�
2

: ð4Þ

This estimate integrates the hyperfine interaction across all
possible classical collision trajectories at energy E.
At specific energies, the ratio σðqÞse =σ

ðcÞ
se for the 5S state

spans up to 6 orders of magnitude. At room temperature or
above, however, the practical polarization rate is deter-

mined by the rate coefficient kðqÞse , which averages the spin-
exchange cross section over the Boltzmann distribution at
temperature T. In Fig. 3(c), we present the polarization rate
coefficient of the ground state (red) and excited state
(orange) at 100 °C as a function of the inverse external
dissociation rate γ−1. Evidently, for long-collision-lifetime
limits, the excited-state polarization rate surpasses that
of the ground state by up to 2 orders of magnitude. This

(a) (b) (c) (d)

FIG. 3. Tunneling resonances in binary collisions. (a) PEC for the 5S state with l ¼ 0 (top) and l ¼ 25 (bottom), superimposed with
the wave function of bound states (E < 0) and quasibound states (E > 0) at their resonance energies. (b) The spin-exchange cross

section σðqÞse ðEÞ of the 5S state (orange) is dramatically enhanced at the resonances, by up to 6 orders of magnitude with respect to that

cross section absent the resonances, σðcÞse ðEÞ (gray). (c) Thermally averaged polarization rate coefficient kðqÞse at 100 °C. kðqÞse for collisions
of 3He with K⋆ in the 5S state (orange) is enhanced by up to 2 orders of magnitude by the resonances at low pressures. (d) Scattering time
delay, relative to a hard-wall potential at the origin, for a binary collision at energy E and j ¼ 0. Sharp peak resonances signify the
formation of quasibound states, enhancing the typical duration of semiclassical binary collisions (0.1 ps) by 3 orders of magnitude.
Vertical dashed lines in (d) mark the mean thermal energy at 100 °C, and arrows exemplify the dominant resonant contribution of a
specific partial wave l ¼ 25 to the time delay. Gray lines in (b)–(d) present semiclassical estimations for the 5S state, which exclude the
contribution of the resonances. The semiclassical limit is reached for high values of γ, where the resonances are suppressed and the
collisions are entirely classical.
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enhancement is due to quantum resonances, as seen by
comparison with the semiclassical estimate (gray) of the

rate coefficient kðcÞse .
Before detailing the experimental proposal for measur-

ing this enhancement and discussing its potential applica-
tions, we find it insightful to discuss its origin and its
expected manifestation in other alkali and noble-gas pairs.
As suggested by the semiclassical formula, Eq. (4), the
cross section is determined by the interaction strength
jαðRÞj2, integrated over the duration of the collision. As
shown in Fig. 2(b), jαðRÞj is comparable for the ground and
excited states, implying that the resonant enhancement is
due to an increase in interaction time.
We estimate the interaction time by calculating the

temporal delay (or acceleration) of a particle with energy
E and angular momentum j scattered by VðRÞ, relative to its
free-flight time. In Fig. 3(d) we present the mean time delay
τjdelayðEÞ¼

P
lσ

j
lτ

j
l =
P

lσ
j
l for γ

−1 ¼ 1 ns. τjl ¼ 2dδjl =dE are

the partial delays, σjlðEÞ¼ð8π=EÞð2lþ1Þsin2δjl are the

partial elastic cross sections, and δjlðEÞ ¼ −ði=2Þ logSjl
are the partial scattering phase shifts [71]. For K-3He in
the 5S excited state, the time-delay features sharp peaks like
those in Fig. 3(b), unlike the smooth ground-state response.
These peaks are associated with tunneling resonances,
where the mean time delay corresponds to the lifetime of
the quasibound state. Notably, the width of a resonance is
inversely proportional to its lifetime, but its contribution to
the spin-exchange cross section scales as its lifetime
squared. This allows a finite number of narrow resonances
to dominate the polarization rate coefficient. We have
repeated this analysis for other estimations of the PEC
[72,73] and found that the enhancement of the rate coef-
ficient remains considerable (see the Supplemental
Material [54]).
We expect polarization enhancement via quasibound

states to be dominant for other pairs of noble-gas and
optically excited alkali atoms. Quasibound states originate
from wells and barriers in the shape of the PEC, which
appear in various alkali-noble-gas pairs [53,74,75] and are
correlated with the shape of the electron density as shown
for LiHe in Ref. [76]. For most resonant collisions, the
interaction time is saturated by γ−1, and therefore each

resonance contributes similarly to kðqÞse . The enhancement is
thus proportional to the total number of resonances Nres,
which predominantly depends on μ. By scaling μ in Eq. (1)
for the K-3He potential, we find that Nres ∝ μ as presented
in Fig. 4(a). We verify this estimate by solving the
scattering of electronically excited K-37Ar pairs, using an
ab initio 5S potential [77]. In Fig. 4(b) we show the
increase in the number of resonances for K-37Ar as
expressed in the mean time delay. We characterize the
enhancement by the resonances over binary polarization

rate in Fig. 4(c) using the ratio kðqÞse =k
ðcÞ
se , which weakly

depends on αðRÞ and on the specific colliding pair.
Resonant spin-exchange optical pumping of noble gas

can be realized with various alkali and noble-gas mixtures,
within a large range of experimental parameters. Here we
present an exemplary configuration using a mixture of
K-3He in a chip-scale cubic cell of length 2 mm and 3 Torr
of helium. The resonant polarization transfer relies on
optical pumping of potassium spins in the 5S state followed
by random collisions with helium gas. The 5S state can
efficiently be excited via a two-photon ladder scheme 4S →
4P3=2 → 5S using 766 nm and 1.25 μm light for the first
and second transitions, respectively. The 4P level is
pressure broadened, with homogeneous optical linewidth
of about Γ ≈ 50 MHz [31] and inhomogeneous Doppler
broadening of 1 GHz. The dominant decay rate of the 5S
state, γ0 ¼ 3.8 MHz, is radiative, as the coupling of S shells
to orbital angular momentum is weak, suppressing destruc-
tion by spin rotation during collisions.
500 mW for each beam covering the cell yields Rabi

frequencies exceeding 300 and 100 MHz. A 3 GHz one-
photon detuning of the beams renders the transition 4S →
5S through the P level virtual, suppressing spin relaxation
by collisions in the P state, yielding a Raman rate
ΩR > 10 MHz. Pulsed operation potentially enables near
unity population as p5S ≈Ω2

R=ðΩ2
R þ γ20=2Þ and about half

that value for cw operation. The spin state of the 5S can be
defined via controlling the polarizations of the beams and
pumping of the 4S spin. For example, setting 766 nm light
polarization circular, pumps the 4S spin and overcomes its
100 kHz depolarization rate by collisions with the walls,
whereas the 1.25 μm light can be linearly polarized. If
necessary, additional on-resonance pulses can maintain the

0

250

500

N
re

s

10 20 30 40
E [meV]

-0.3

0

1

10

100

de
la

y [
ps

]

10 20 30 40
 [amu]

1

10

100

(a)

(c)

(b)
K-Ar

K-He

FIG. 4. Resonant spin-polarization transfer for different elec-
tronically excited alkali-noble-gas pairs. (a) The number of
tunneling resonances Nres (blue line) increases linearly with μ,
derived by solving the K-3He scattering in Eq. (1) scaled by μ.
Crosses mark calculations for unscaled K-3He (black) and the true
5S PEC of K-37Ar (brown). (b) Scattering time delay, for the
heavier K-37Ar pair. The number of resonances is dramatically
increased compared with Fig. 3(d). (c) The enhancement in the

polarization rate coefficient kðqÞse =k
ðcÞ
se for the 5S potential by

formation of tunneling resonances over binary collisions, which
we estimate to be constant and independent of μ and α.

PHYSICAL REVIEW LETTERS 128, 013401 (2022)

013401-4



4S spin polarization and enable well-defined excita-
tion channels. For the low-pressure configuration, the
stringent estimation of γ−1 ¼ 1 ns corresponds to a
100-fold enhancement of the polarization rate coefficient
via resonant collisions [cf. Fig. 3(c)].
In summary, we analyzed the spin-polarization transfer

in collisions of optically excited alkali and noble-gas
atoms, using ab initio calculations of K-He and K-Ar
pairs. We revealed the formation of quasibound states,
manifested as sharp resonances in the scattering time delay
and spin-exchange cross section. The resonances are
expected to enhance the polarization transfer rate of noble
gases by 2 orders of magnitude for a thermal ensemble at
ambient conditions and up to 6 orders of magnitude at the
resonance energies and be significant for different optically
excited alkali and noble-gas pairs.
Various applications using spin-polarized gases can

benefit from optically controlled enhancement of the
polarization rate. Here we consider several potential ave-
nues. Precision NMR sensors and comagnetometers use
mixtures of noble-gas and alkali spins. The former sense
external fields; the latter serve as an embedded optical
magnetometer [78–83]. In miniaturized sensors, with
significant alkali polarization loss to cell walls, initializa-
tion time and sensitivity can greatly benefit from enhanced
polarization rates for all noble gases. This is much like the
case of xenon, which can be quickly polarized and thus
suitable for miniaturization [84]. Notably, the proposed
mechanism is optically controlled, enhancing the polari-
zation rate on demand within the standard operation of
these sensors.
Magnetic resonance imaging of human air spaces with

record resolution and preparation of neutron spin filters and
targets use large volumes of polarized gas at atmospheric
pressure or above. The method of metastability-exchange
optical pumping (MEOP) enables rapid polarization of
helium nuclei at low gas pressures. Subsequent compres-
sion then brings the polarized gas to a higher target pressure
[10]. Whereas MEOP is exclusively limited to helium, the
proposed technique enables quick low-pressure polariza-
tion of other noble-gas atoms, which may be more available
or more appropriate for specific applications.
Several quantum information applications, such as

optical quantum memories [19,20], generation of spin
entanglement [18,85,86], and nonclassical coupling to
optomechanical systems, like gravitational-wave detectors
[87–89], can significantly benefit from the long spin
lifetime of noble gases. These applications require a
bidirectional interface between spins and light, overcoming
classical noise to reach the standard quantum limit [90,91].
An efficient interface requires several ingredients, includ-
ing high spin polarization, increased number densities, and
strong optical interaction. The classical limiting noise
typically scales with the number of noble-gas atoms in
the cell. Therefore, quantum applications are likely to be

first realized at low pressures and at small volumes,
conditions under which the proposed mechanism is most
beneficial.
Finally, the resonant enhancement at particular kinetic

energies is several orders of magnitude greater than the
thermally averaged one. Cryogenic operation and use of
velocity selective atomic beams might exploit that enhance-
ment even further.
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