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Quantum dynamics of collective spin states in a thermal gas
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Ensembles of alkali-metal or noble-gas atoms at room temperature and above are widely applied in quantum
optics and metrology owing to their long-lived spins. Their collective spin states maintain nonclassical nonlocal
correlations, despite the atomic thermal motion in the bulk and at the boundaries. Here we present a stochastic,
fully quantum description of the effect of atomic diffusion in these systems. We employ the Bloch-Heisenberg-
Langevin formalism to account for the quantum noise originating from diffusion and from various boundary
conditions corresponding to typical wall coatings, thus modeling the dynamics of nonclassical spin states with
spatial interatomic correlations. As examples, we apply the model to calculate spin noise spectroscopy, temporal
relaxation of squeezed spin states, and the coherent coupling between two spin species in a hybrid system.
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I. INTRODUCTION

Gaseous spin ensembles operating at room temperature and
above have attracted much interest for decades. At ambient
conditions, alkali-metal vapors and odd isotopes of noble
gases exhibit long spin-coherence times, ranging from mil-
liseconds to hours [1–6]. These spin ensembles, consisting
of a macroscopic number of atoms, are beneficial for preci-
sion sensing, searches of new physics, and demonstration of
macroscopic quantum effects [7–13]. In particular, manipula-
tions of collective spin states allow for demonstrations of basic
quantum phenomena, including entanglement, squeezing, and
teleportation [14–17] as well as storage and generation of
photons [18–21]. It is the collectively enhanced coupling and
the relatively low noise offered by these spin ensembles that
make them particularly suitable for metrology and quantum
information applications.

Thermal atomic motion is an intrinsic property of the dy-
namics in gaseous systems. Gas-phase atoms, in low-pressure
room-temperature systems, move at hundreds of meters per
second in ballistic trajectories, crossing the cell at submil-
lisecond timescales and interacting with its boundaries. To
suppress wall collisions, buffer gas is often introduced, which
renders the atomic motion diffusive via velocity-changing
collisions [22]. At the theory level, the effect of diffusion on
the mean spin has been extensively addressed, essentially by
describing the evolution of an impure (mixed) spin state in the
cell using a mean-field approximation [23–28]. This common
formalism treats the spatial dynamics of an average atom in
any given position using a spatially dependent density matrix.
It accurately captures the single-atom dynamics but neglects
both interatomic correlations and thermal fluctuations associ-
ated with the spin motion and collisions.

Nonclassical phenomena involving collective spin states,
such as transfer of quantum correlations between nonoverlap-
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ping light beams by atomic motion [29–31], call for a quan-
tum description of the thermal motion. For spin-exchange
collisions, which are an outcome of thermal motion, such
a quantum description has received much recent attention
[32–39]. However, the more direct consequences of thermal
motion, namely, the stochasticity of the spatial dynamics in
the bulk and at the system’s boundaries, still lack a proper
fully quantum description.

In this paper, we describe the effect of spatial diffusion
on the quantum state of warm spin gases. Using the Bloch-
Heisenberg-Langevin formalism, we identify the dissipation
and noise associated with atomic thermal motion and with the
scattering off the cell boundaries. Existing significant work
in this field relies primarily on mean-field models, which
address both wall coupling [40] and diffusion in unconfined
systems [41]. The latter work derives the correlation func-
tion of diffusion-induced quantum noise from the correlation
function of mass diffusion in unconfined systems. Here we
derive the quantum noise straight out of Brownian motion
considerations and provide a solution for confined geometries.
Our model generalizes the mean-field results and enables the
description of interatomic correlations and collective quantum
states of the ensemble. We apply the model to highly polarized
spin vapor and analyze the effect of diffusion in various
conditions, including spin noise (SN) spectroscopy [12,42–
46], spin squeezing [14,32], and coupling of alkali-metal to
noble-gas spins in the strong-coupling regime [33,34].

The paper is arranged as follows. We derive in Sec. II
the Bloch-Heisenberg-Langevin model for the evolution of
the collective spin operator due to atomic Brownian motion
and cell boundaries. We focus on highly polarized ensembles
in Sec. III and provide the model solutions. In Sec. IV, we
present several applications of our model. We discuss how it is
employed to describe the temporal evolution, to calculate ex-
perimental results, to provide insight, and to optimize setups
for specific tasks. Limits of our model and differences from
existing models, as well as future prospects, are discussed in
Sec. V. We provide appendices that elaborate on the quantum
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FIG. 1. (a) Atomic spins in the gas phase, comprising a collective
quantum spin ŝ(r, t ) and undergoing thermal motion. (b) In the
diffusive regime, the spins spatially redistribute via frequent velocity-
changing collisions. (c) Collisions (local interaction) with the walls
of the gas cell may fully or partially depolarize the spin state.
(d) Diffusion and wall collisions lead to a multimode evolution, here
exemplified for a spin excitation â(r, t ) ∝ ŝx (r, t ) − iŝy(r, t ) with an
initial Gaussian-like spatial distribution 〈â(r, t )〉 and for destructive
wall collisions. In addition to the mode-specific decay �n, each
spatial mode accumulates mode-specific quantum noise Ŵn(t ).

noise produced by thermal motion (Appendix A), a simplified
model for analyzing the scattering off the cell walls (Ap-
pendix B), means of solving the Bloch-Heisenberg-Langevin
equation (Appendix C), and the Faraday rotation scheme used
herein (Appendix D).

II. MODEL

Consider a warm ensemble of Na atomic spins confined in
a cell, as illustrated in Fig. 1(a). Let ra(t ) be the classical
location of the ath atom at time t and define the single-
body density function at some location r as na(r) = δ[r −
ra(t )]. We denote the spin operator of the ath atom by ŝa

and define the space-dependent collective spin operator as
ŝ(r, t ) = ∑Na

a=1 ŝana(r). While formally ŝ(r, t ) is sparse and
spiked, practical experiments address only its coarse-grained
properties, e.g., due to finite spatial scale of the employed
optical or magnetic fields. The time evolution of the collective
spin operator is given by

∂ ŝ
∂t

=
Na∑

a=1

∂ ŝa

∂t
na + ŝa

∂na

∂t
. (1)

Here the first term accounts for the internal degrees of free-
dom, including the local Hamiltonian evolution of the spins
and spin-spin interactions, while the second term accounts for
the external degrees of freedom, namely, for motional effects.
The focus of this paper is on the second term, considered in
the diffusion regime as illustrated in Fig. 1(b). We consider the
first term only for its contribution to the boundary conditions,
via the effect of wall collisions as illustrated in Fig. 1(c).
In the following, we first derive the equations governing
the quantum operator ŝ(r, t ) in the bulk and subsequently
introduce the effect of the boundaries.

A. Diffusion in the bulk

We consider the limit of gas-phase atoms experiencing
frequent, spin-preserving, velocity-changing collisions, such
as those characterizing a dilute alkali-metal vapor in an inert
buffer gas. In this so-called Fickian diffusion regime, the
atomic motion is diffusive, and the local density evolution can
be described by the stochastic differential equation [47]

∂na/∂t = D∇2na + ∇(η
√

na), (2)

where D is the diffusion coefficient, and η is a white
Gaussian stochastic process the components of which sat-
isfy 〈ηi(r, t )η j (r′, t ′)〉c = 2Dδi jδ(r − r′)δ(t − t ′) for i, j =
x, y, z. We use 〈·〉c to represent ensemble average over the
classical atomic trajectories, differing from the quantum ex-
pectation value 〈·〉. The first term in Eq. (2) leads to delo-
calization of the atomic position via deterministic diffusion,
while the second term introduces fluctuations that localize the
atoms to discrete positions. Equation (2), derived by Dean for
Brownian motion in the absence of long-range interactions
[47], is valid under the coarse-grain approximation, when the
temporal and spatial resolutions are coarser than the mean free
time and path between collisions.

Substituting ∂na/∂t into Eq. (1), we obtain the Bloch-
Heisenberg-Langevin dynamical equation for the collective
spin:

∂ ŝ/∂t = i[H, ŝ] + D∇2ŝ + f̂ . (3)

Here H is the spin Hamiltonian in the absence of atomic
motion, originating from the ∂ ŝa/∂t term in Eq. (1). The quan-
tum noise operator f̂ = f̂ (r, t ) is associated with the local
fluctuations of the atomic positions. It can be formally written
as f̂μ = ∇(ŝμη/

√
n), where μ = x, y, z, and n = ∑

a na is
the atomic density. The noise term has an important role
in preserving the mean spin moments of the ensemble. The
commutation relation of different instances of the noise f̂μ =
f̂μ(r, t ) and f̂ ′

ν = f̂ν (r′, t ′) satisfies

〈[ f̂μ, f̂ ′
ν]〉c = 2iεξμνD(∇∇′)ŝξ δ(r − r′)δ(t − t ′), (4)

where εξμν is the Levi-Civita antisymmetric tensor. These
commutation relations ensure the conservation of spin com-
mutation relations [ŝμ(r, t ), ŝν (r′, t )] = iεξμν ŝξ δ(r − r′) on
the operator level, compensating for the diffusion-induced
decay in the bulk due to the D∇2 term. We provide the full
derivation of f̂ and its properties in Appendix A.

The spin noise process is temporally white and spatially
colored, with higher noise content for shorter wavelengths.
The increase of noise at a fine-grain scale counteracts the
diffusion term, which decreases the spin variations faster at
smaller length scales; this is a manifestation of the fluctuation-
dissipation theorem. Finally, as expected, ensemble averaging
over the noise realizations leaves only the diffusion term in
the mean-field Bloch equation for the spin ∂〈s〉/∂t = D∇2〈s〉,
where 〈s〉 = 〈ŝ(r, t )〉 is the spin expectation value at a course-
grained position r.

B. Boundary conditions

We now turn to derive the contribution of wall collision
to the quantum dynamics of the collective spin. When the
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atoms diffuse to the boundaries of the cell, their spin interacts
with the surface of the walls. This interaction plays an impor-
tant role in determining the depolarization and decoherence
times of the total spin [7,22] and may also induce frequency
shifts [24,48–51]. Bare glass strongly depolarizes alkali-metal
atoms, and magnetic impurities in the glass affect the nuclear
spin of noble-gas atoms. To attenuate the depolarization at
the walls, cells can be coated with spin-preserving coatings
such as paraffin [4,52,53] or octadecyltrichlorosilane (OTS)
[40] for alkali-metal vapor and Surfasil or SolGel [54–57]
for spin-polarized xenon. The coupling between the spins and
the cell walls constitutes the formal boundary conditions of
Eq. (3).

In the mean-field picture, the wall coupling can be de-
scribed as a local scatterer for the spin-density matrix ρ.
In this picture, assisted by kinetic gas theory, the boundary
conditions can be written as [23](

1 + 2
3λn̂ · ∇)

ρ = (
1 − 2

3λn̂ · ∇)
Sρ, (5)

where S is the wall scattering matrix. Here λ denotes the mean
free path of the atoms, related to the diffusion coefficient via
D = λv̄/3, where v̄ is the mean thermal velocity.

We adopt a similar perspective in order to derive the
coupling of the collective spin ŝ with the walls in the Bloch-
Heisenberg-Langevin formalism. In this formalism, the scat-
tering off the walls introduces not only decay, but also fluc-
tuations. In the Markovian limit, when each scattering event
is short, its operation on a single spin becomes a stochastic
density matrix:

S ŝa = e−1/N ŝa + ŵa. (6)

Here N denotes the average number of wall collisions a
spin withstands before depolarizing [40]. The accompanied
quantum noise process is ŵa; it ensures the conservation of
spin commutation relations at the boundary.

Using the stochastic scattering matrix, we generalize the
mean-field boundary condition [Eq. (5)] for collective spin
operators as

(1 − e−1/N )ŝ + 2
3λ(1 + e−1/N )(n̂ · ∇)ŝ = ŵ. (7)

Here ŵ(r, t ) = ∑
a ŵana, for positions r on the cell boundary,

is the collective wall-coupling noise process affecting the
local spin on the wall. ŵ is zero on average and its statis-
tical properties, together with the derivation of Eq. (6), are
discussed in Appendix B. The first term in Eq. (7) describes
the fractional depolarization by the walls, and the second term
describes the difference between the spin flux entering and
exiting the wall. If the wall coupling also includes a coherent
frequency-shift component, it can be appropriately added to
these terms. The term on the right-hand side describes the
associated white fluctuations.

In the limit of perfect spin-preserving coating, the bound-
ary condition becomes a no-flux (Neumann) condition sat-
isfying (n̂ · ∇)ŝ = 0, and depolarization is minimized. This
limit is realized for N � R/λ, where R is the dimension of
the cell [58] [7]. In the opposite limit of strongly depolarizing
walls, i.e., N � 1, the (Dirichlet) boundary condition is ŝ =
ŵ/(1 − e−1/N ) [59], rendering the scattered spin state random.
For any other value of N (partially depolarizing walls), the

boundary condition in Eq. (7) is identified as a stochastic
Robin boundary condition [60].

The two mechanisms discussed in this section—the bulk
diffusion and the wall coupling—are independent physical
processes. This is evident by the different parameters char-
acterizing them—D and N—which are dictated by different
physical scales, such as buffer gas pressure and the quality of
the wall coating. These processes are different in nature; while
wall coupling leads to spin depolarization and thermalization,
diffusion leads to spin redistribution while conserving the total
spin. They introduce independent fluctuations and dissipation,
and they affect the spins at different spatial domains (the
bulk and the boundary). That being said, both processes
are necessary to describe the complete spin dynamics in a
confined volume, simultaneously satisfying Eqs. (3) and (7).

III. POLARIZED ENSEMBLES

When discussing nonclassical spin states for typical ap-
plications, it is beneficial to consider the prevailing limit of
highly polarized ensembles. Let us assume that most of the
spins point downwards (−ẑ). In this limit, we follow the
Holstein-Primakoff transformation [61,62] and approximate
the longitudinal spin component by its mean value ŝz(r, t ) =
sz (with sz = −n/2 for spin 1/2). The ladder operator ŝ− =
ŝx − iŝy, which flips a single spin downwards at position r, can
be represented by the annihilation operator â = ŝ−/

√
2|sz|.

This operator satisfies the bosonic commutation relations
[â(r, t ), â†(r′, t )] = δ(r − r′). Under these transformations,
Eqs. (3) and (7) become

∂ â/∂t = i[H, â] + D∇2â + f̂ , (8)

(1 − e−1/N )â = − 2
3λ(1 + e−1/N )n̂ · ∇â + ŵ, (9)

where both f̂ = ( f̂x − i f̂y)/
√

2|sz| and ŵ = (ŵx +
iŵy)/

√
2|sz| are now vacuum noise processes (see Appendices

A and B; note that f̂ is spatially colored). Here, Eq. (8)
describes the spin dynamics in the bulk, while Eq. (9) holds
at the boundary.

We solve Eqs. (8) and (9) by decomposing the operators
into a superposition of nonlocal diffusion modes â(r, t ) =∑

n ân(t )un(r). We first identify the mode functions un(r)
by solving the homogeneous Helmholtz equation (D∇2 +
�n)un(r) = 0, where the eigenvalues −�n are fixed by the
Robin boundary condition [Eq. (9) without the noise term].
The operator ân(t ) = ∫

V â(r, t )u∗
n(r)d3r, where V is the cell

volume, annihilates a collective transverse spin excitation with
a nonlocal distribution |un(r)|2 and a relaxation rate �n. These
operators satisfy the bosonic commutation relation [ân, â†

m] =
δnm. The noise terms f̂ and ŵ are decomposed using the same
mode-function basis. This leads to mode-specific noise terms
Ŵn(t ), operating as independent sources.

Assuming, for the sake of example, a magnetic (Zeeman)
Hamiltonian H = ω0ŝz, where ω0 is the Larmor precession
frequency around a ẑ magnetic field, the time evolution of the
mode operators is given by

ân(t ) = ân(0)e−(iω0+�n )t + Ŵn(t ). (10)
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TABLE I. Solutions of the diffusion-relaxation modes for rectangular, cylindrical, and spherical cells. Jn(x) is the nth Bessel function of
the first kind, j�(x) is the �th spherical Bessel function of the first kind, and Y�p(θ, ϕ) are the spherical harmonics. The decay rates satisfy
�n = Dk2

n .

Cell shape Rectangular Cylindrical Spherical

Symmetry
Symmetric: (+)

Antisymmetric: (−)
Angular: n Spherical: �, p

Coordinate range −L/2 � x � L/2
0 � ρ � R

0 � ϕ � 2π

0 � r � R
0 � θ � π

0 � ϕ � 2π

Boundary equation
cot(k+

n L/2) = 2
3

1+e−1/N

1−e−1/N λk+
n

− tan(k−
n L/2) = 2

3
1+e−1/N

1−e−1/N λk−
n

− Jn (kνnR)
J ′

n (kνnR) = 2
3

1+e−1/N

1−e−1/N λkνn − j� (kn�R)
j′
�
(kn�R) = 2

3
1+e−1/N

1−e−1/N λkn�

un(r)
u+

n (x) = A+
n cos(k+

n x)
u−

n (x) = A−
n sin(k−

n x)
uνn(ρ, ϕ) = AνnJn(kνnρ )einϕ un�p(r, θ, ϕ) = An�p j�(kn�r)Y�p(θ, ϕ)

The multimode decomposition and evolution are illustrated in
Fig. 1(d), showing the first angular-symmetric mode distribu-
tions un(r) of a cylindrical cell. In Table I, we provide explicit
solutions of the mode bases and associated decay rates for any
given boundary properties in either rectangular, cylindrical, or
spherical cells. The solution procedure and the corresponding
decomposition of the noise terms are demonstrated for an
exemplary one-dimensional (1D) geometry in Appendix C.
We note that, asymptotically, the decay of high-order modes
(n � 1) is independent of cell geometry and is approximately
given by �n ∼ D(πnV −1/3)2, where πnV −1/3 approximates
the mode’s wave number.

IV. APPLICATIONS

The outlined Bloch-Heisenberg-Langevin formalism ap-
plies to various experimental configurations and applications.
It should be particularly useful when two constituents of the
same system have different spatial characteristics, leading
to different spatial modes. That occurs, for example, when
coupling spins to optical fields [Fig. 1(d)] or when mixing
atomic species with different wall couplings. In this section,
we consider three such relevant, real-life cases.

A. Spin noise spectroscopy

SNS allows one to extract physical data out of the noise
properties of the spin system. It is used for magnetometry with
atomic ensembles in or out of equilibrium [12,43,44,46,63],
for low-field NMR [64], for fundamental noise studies aimed
at increasing metrological sensitivity [9,12], and more [42].
SNS is also used to quantify interatomic correlations in
squeezed states, when it is performed with precision surpass-
ing the standard quantum limit [14,32,39,43].

Spin noise in an alkali-metal vapor is affected by various
dephasing mechanisms. Here we describe the effect of dif-
fusion, given a spatially fixed light beam employed to probe
the spins. Since this probe beam may overlap with several
spatial modes of diffusion, the measured noise spectrum
would depend on the beam size, cell dimensions, and diffusion
characteristics. On the mean-field level, this effect has been
described by motion of atoms in and out of the beam [28,65].
Here we calculate the SNS directly out of the quantum noise
induced by the thermal motion as derived above.

For concreteness, we consider two cylindrical cells of
radius R = 1 cm and length L = 3 cm. One cell contains
100 Torr of buffer gas, providing for λ = 0.5 μm and D =
1 cm2/s, and no spin-preserving coating N � 1 (e.g., as in
Ref. [32]). The other cell has a high-quality paraffin coating,
allowing for N = 106 wall collisions before depolarization
[4], and only dilute buffer gas originating from outgassing
of the coating, such that λ = 1 mm and D = 3 × 103 cm2/s
rendering the atomic motion in the Fickian regime (λ � R, L)
[66,67]. A probe beam with waist radius w0 measures the
alkali-metal spin x̂ component, oriented along the cylinder
axis as presented in Fig. 2(a). The cell is placed inside a
magnetic field B = 2π f0/ga · ẑ pointing along the spin polar-
ization, where ga is the alkali-metal gyromagnetic ratio.

In Appendix D, we review the measurement details and
calculate the spin noise spectral density Sxx( f ) for both cells:

Sxx( f ) =
∑

n

∣∣I (G)
n

∣∣2

4

2P̃�n

�2
n + 4π2( f − f0)2

, (11)

where f is the frequency in which the SNS is examined, �n

is again the decay rate of the nth diffusion mode, I (G)
n is the

overlap of the Gaussian probe beam with that mode, and P̃
depends on the spin statistics and on the polarization, such
that P̃ = 1 for highly polarized ensembles and for spin 1/2.

The calculated spectra are shown in Figs. 2(b) and 2(c) for
w0 = 1 mm. The cusplike spectra originate from a sum of
Lorentzians, the relative weights of which correspond to the
overlap of the probe beam with each given mode |I (G)

n |2. In the
past, this cusp was identified as a universal phenomena [65],
while here we recreate this result using the eigenmodes and
accounting for the boundary. With spin-preserving coating,
the uniform mode n = 0 decays slower, and its contribution
to the noise spectrum is much more pronounced, while the
higher-order modes decay faster due to lack of buffer gas.

The dominance of the central narrow feature thus depends
on the overlap of the probe with the least-decaying mode
|I (G)

0 |2. To quantify it, we define the unitless noise content

ζ = ∫ f1/2

− f1/2
Sxx( f )df as the fraction of the noise residing within

the full width at half maximum of the spectrum. Figure 2(d)
shows ζ for different beam sizes w0/R. Evidently, the spin
resonance is more significant in the buffer gas cell, unless the
probe beam covers the entire cell. This should be an important
consideration in the design of such experiments.
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FIG. 2. Effect of thermal motion in spin noise spectroscopy. (a) The spins are initially polarized along a magnetic field Bẑ, and the spin
projection 〈ŝx〉 is measured by Faraday rotation using a nondiverging Gaussian probe beam. The calculation assumes a probe waist radius of
w0 = 1 mm and a cylindrical cell with radius R = 1 cm and length L = 3 cm. (b) Spin noise spectrum for an uncoated cell with a dense buffer
gas (D = 1 cm2/s, N � 1), calculated using Eq. (11). Many spatial (diffusion) modes contribute to the noise, and thus the total signal is a
weighted sum of varying Lorentzians, producing a cusp profile. (c) Spin noise spectrum for a cell coated with high-quality paraffin coating
(D = 3 × 103 cm2/s, N = 106). The cusp is wider (since D is larger), except for an additional sharp feature associated with the uniform spatial
mode, the slow decay of which is governed by wall collisions. The dotted lines in (b) and (c) are a simple Lorentzian with width �w = π 2D/w2

0 ,
provided as reference for a single-mode approximation. (d) Noise content in the vicinity of the resonance (as defined in the main text) for the
same two cells and varying probe waists. The narrower the probe beam, the larger its overlap with the high-order, rapidly decaying, diffusion
modes, thus leading to weaker signal in the central resonance feature. This effect becomes more pronounced for lower buffer gas pressures.

B. Squeezed-state lifetime

When the spin noise is measured with a sensitivity below
the standard quantum limit, the spin ensemble is projected into
a collective squeezed spin state. Such measurements are done
primarily using optical Faraday rotation in paraffin-coated
cells [14–16,68] and recently also in the presence of buffer gas
[32]. The duration of the probe pulse and the spatial profile of
the probe beam determine the spatial profile of the squeezed
spin state and hence its lifetime.

We shall employ the same two cells and geometry from the
previous section [see Fig. 2(a)]. Given a probe pulse duration
much shorter than w2

0/D and assuming the measurement sen-
sitivity surpasses the standard quantum limit, a squeezed state
is formed, with initial spin variance 〈x̂2

G(0)〉 � 1/4, where
x̂G(t ) is the measured spin operator [defined in Appendix D
as a weighted integral over the local operator x̂(r, t )]. The
state is remeasured (validated) after some dephasing time t
[see Fig. 3(a)]. In this type of experiments, narrow beams are
often preferable, as the local intensity affects the measurement
sensitivity, and since narrow beams simplify the use of optical
cavities. Considering the different diffusion modes un(r) with
their decay rates �n, we use Eq. (10) to calculate the evolution
in the dark of the spin variance:

〈
x̂2

G(t )
〉 =

(∑
n

|I (G)
n |2e−�nt

)2[〈
x̂2

G(0)
〉 − 1/4

] + 1/4. (12)

Figures 3(b) and 3(c) present the calculated evolution. As
expected, a narrow probe beam squeezes the atoms with which
it overlaps, which are spanned in a superposition of diffu-
sion modes [the first low-order modes in the buffer gas cell
are visualized in Fig. 1(d)], leading to multimode temporal
dynamics. The measured squeezing decreases due to atoms

diffusing out of the beam, as manifested by the exponential
decay of each spatial mode. The importance of thermal motion
grows as the degree of squeezing increases, as the latter relies
on squeezing in higher-spatial modes. To see this, we plot
in Fig. 3(d) the decay of squeezing in the buffer gas cell
with a wide probe beam and with the initial state extremely
squeezed 〈x̂2(r, t = 0)〉 ≪ 1/4. The squeezing rapidly de-
cays, as a power law, until only the lowest-order mode remains
squeezed. This indicates the practical difficulty in achieving
and maintaining a high degree of squeezing. An interesting
behavior is apparent for the case of a large beam in a coated
cell [Fig. 3(c), w0 = 8 mm]. Here, the significant overlap with
the uniform produces a certain degree of squeezing that is
especially long lived.

These results demonstrate the significance of accounting
for many diffusion modes when considering fragile non-
classical states or high-fidelity operations. For example, the
presented calculations for the 25-dB squeezing require 1000
modes to converge.

C. Coupling of alkali-metal spins to noble-gas spins

Lastly, we consider collisional spin exchange between two
atomic species [2,7,33,35,36,39,69]. When the two species
experience different wall couplings, their spin dynamics is de-
termined by different diffusion-mode bases. Therefore mutual
spin exchange, which is due to a local coupling (atom-atom
collisions), depends on the mode overlap between these bases.

Here we consider the coupling of alkali-metal spins to
noble-gas spins, such as helium-3, for potential applications
in quantum optics [34]. The nuclear spins of noble gases are
well protected by the enclosing complete electronic shells and
thus sustain many collisions with other atoms and with the

012822-5



ROY SHAHAM, OR KATZ, AND OFER FIRSTENBERG PHYSICAL REVIEW A 102, 012822 (2020)

10-4 10-3 10-2 10-1 100

t [ms]

0

2

4

6
sq

ue
ez

in
g 

[d
B

]

(c)

dominated by
wall coupling

w
0
=1mm

w
0
=2mm

w
0
=4mm

w
0
=8mm

10-2 10-1 100 101 102 103

t [ms]

0

2

4

6

sq
ue

ez
in

g 
[d

B
]

(b)
w

0
=1mm

w
0
=2mm

w
0
=4mm

w
0
=8mm

sq
ue

ez
in

g thermal motion
in the dark

t

va
rif

ic
at

io
n

(a)

10-6 10-4 10-2 100

t/T
w

0

10

20

sq
ue

ez
in

g 
[d

B
]

w
0
/R>>1(d)

FIG. 3. Lifetime of spin squeezing. (a) Experimental sequence
comprising a short measurement (squeezing) pulse, followed by
dephasing in the dark due to thermal motion for duration t , and a
verification pulse. The same probe beam is used for both pulses. In
the calculations, the Gaussian distribution is initially squeezed by the
measurement to spin variance of 〈x̂2

G(0)〉 = 0.05 (7-dB squeezing).
We take the same cell geometry as in Fig. 2 (R = 1 cm, L =
3 cm). (b) Degree of spin squeezing vs time in the buffer gas cell,
calculated using Eq. (12). Spin squeezing exhibits multiexponential
decay associated with multiple diffusion modes. Larger probe beams
lead to longer squeezing lifetimes, as the beam overlaps better with
lower-order modes. (c) Spin squeezing in the coated cell. In a coated
cell, the decay rate of the uniform diffusion mode, dominated by
wall coupling, is substantially lower than that of higher-order modes.
Therefore, ensuring a significant overlap of the probe beam with the
uniform mode is even more important in coated cells for maximizing
the squeezing lifetime. The dotted line in (b) and (c) is a single
exponential decay 〈x̂2(t )〉 = 〈x̂2(0)〉e−2�wt + (1 − e−2�wt )/4, shown
for reference with �w = π 2D/w2

0 and w0 = 4 mm; note the differ-
ence in timescales between (b) and (c). (d) An extremely squeezed
state relies more on higher-order spatial modes and thus loses its
squeezing degree rapidly (time is normalized by Tw = R2/π 2D). The
calculation is initialized with a uniform distribution of squeezing and
includes the first 1000 radial modes, required for convergence.

cell walls. Their lifetime typically reaches minutes and hours
[5,6,70]. In an alkali-metal–noble-gas mixture, the noble gas
acts as a buffer both for itself and for the alkali-metal atoms,
so that both species diffuse, and their collective spin states can
be described by our Bloch-Heisenberg-Langevin model.

As the noble-gas spins do not relax by wall collisions, their
lowest-order diffusion mode ub

0(r) is that associated with the
characteristic (extremely) long lifetime. Higher-order modes
ub

n(r) decay due to diffusion with typical rates �walln2 =
n2π2D/R2, where R is the length scale of the system. For
typical systems, �wall is of the order of (1 ms)−1 − (1 s)−1.
Consequently, to enjoy the long lifetimes of noble-gas spins,
one should employ solely the uniform mode.

The alkali-metal spins couple locally to the noble-gas spins
with a collective rate J via spin-exchange collisions [33].
Unlike the noble-gas spins, the alkali-metal spins are strongly
affected by the cell walls, and consequently their low-order
diffusion modes ua

m(r) are different. This mode mismatch,

TABLE II. Overlap coefficients, cmn = ∫
V d3rA∗

m(r)Bn(r), of the
first five spherically symmetric modes, i.e., � = p = 0. We take
Am(r) to be the diffusion modes of a spherical cell with radius R = 1
and destructive walls, and Bn(r) to be the modes in the same cell but
with spin-conserving walls.

cmn n = 0 n = 1 n = 2 n = 3 n = 4

m = 0 0.780 0.609 −0.126 0.058 −0.033
m = 1 −0.390 0.652 0.622 −0.158 0.079
m = 2 0.260 −0.274 0.647 0.627 −0.173
m = 3 −0.195 0.182 −0.256 0.644 0.629
m = 4 0.156 −0.139 0.1680 −0.246 0.643

between ua
m(r) and ub

n(r), leads to fractional couplings cmnJ ,
where cmn = ∫

V d3r ua∗
m (r)ub

n(r) are the overlap coefficients.
In particular, |cm0|J are the couplings to the uniform (long
lived) mode of the noble-gas spins. Usually, no antirelaxation
coating is used in these experiments, thus |cm0|<1.

Here we demonstrate a calculation for a spherical cell of
radius R, for which the radial mode bases ua

m(r) and ub
n(r) and

associated decay rates �am and �bn are presented in Appendix
C, alongside the first cm0 values for an uncoated cell (Table II).
The calculation includes the first m, n � 70 modes [71]. As
the initial state, we consider the doubly excited (Fock) state
of the alkali-metal spins |ψ0〉 = 1√

2
(
∑

m αma†
m)2|0〉a|0〉b =

|2〉a|0〉b, where |0〉a|0〉b is the vacuum state with all spins
pointing downwards. We take the initial excitation to be
spatially uniform, for which the coefficients αm = cm0 sat-
isfy

∑
m αmum(r) = ub

0(r) = (4πR3/3)−1/2. We calculate the
transfer of this excitation via spin exchange to the uniform
mode b̂0 of the noble-gas spins, i.e., to the state |0〉a|2〉b =
2−1/2(b̂†

0)2|0〉a|0〉b.
Figure 4 displays the exchange fidelity F =

max |〈ψ (t )| |0〉a|2〉b|2 as a function of both spin-exchange rate
J and quality of coating N . As N increases, the initial uniform
excitation matches better the lower-order modes of the
alkali-metal spins, which couple better to the uniform modes
of the noble-gas spins. Indeed we find that the exchange
fidelity grows with increasing J and N .

V. DISCUSSION

We have presented a fully quantum model, based on a
Bloch-Heisenberg-Langevin formalism, for the effects of dif-
fusion on the collective spin states in a thermal gas. The
model is valid when the atomic mean free path is much
shorter than the apparatus typical dimension. This is often
the case for warm alkali-metal-vapor systems, even when a
buffer gas is not deliberately introduced, as the out-gassing of
a spin-preserving wall coating can lead to mean free paths on
the order of millimeters [66,67].

We have mostly focused on highly polarized spin ensem-
bles, typically used to study nonclassical phenomena that
employ the transverse component of the spin. It is important
to note that Eqs. (3) and (7) hold generally and can be
applied to unpolarized systems as well. For example, the
presented analysis of spin noise spectra holds for unpolarized
vapor [accounting for suitable spin statistics in Eq. (11) using
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FIG. 4. Excitation exchange between polarized alkali-metal and
noble-gas spins. Shown is the exchange fidelity of the doubly excited
(Fock) states |2〉a|0〉b and |0〉a|2〉b. We assume a spherical cell
containing potassium and helium-3. The quality N of the wall coating
for the alkali metal is varied between no coating (N � 1) and perfect
coating (N → ∞). The noble-gas spins do not couple to the cell
walls. The exchange fidelity approaches 1 when J � �wall, �a, as
then the spin exchange is efficient for many diffusion modes; here
�wall is the contribution of wall collisions to the relaxation rate of
the alkali-metal spin (i.e., the typical diffusion rate to the walls),
and �a is the contribution of atomic collisions. The calculations are
performed for a cell radius R = 5 mm and with 1 atm of helium-
3. The diffusion constants are Da = 0.35 cm2/s for the potassium
(mean free path λa = 50 nm) so that �wall = π 2Da/R2 = 1/(70 ms),
and Db = 0.7 cm2/s for the helium (mean free path λb = 20 nm).
The additional homogeneous decay of the alkali metal is �a ≈ 6 s−1

[7]. The wall coating plays a significant role, since for Nλa/R > 1
(i.e., N > 105) the diffusion modes of the potassium and helium
spins match.

Eq. (D2)] and is thus applicable to nonclassical experiments
done in that regime [32]. Our model can also describe other
space-dependent phenomena, such as the dynamics in the
presence of nonuniform driving fields [29].

The presented model agrees with existing mean-field de-
scriptions of diffusion of atomic spins. It further agrees with
models employing the dissipation-fluctuation theorem to de-
rive the spin noise spectrum from the decay associated with
diffusion. Importantly, it extends all these models by describ-
ing quantum correlations and explicitly deriving the quantum
noise of the Brownian motion. The suggested model assumes
λ � R, L (Fickian diffusion) and thus does not hold for the
special case of small, low-pressure, coated cells where the
atomic motion is predominantly ballistic (λ � R, L) [21,63].
Nevertheless, it may still provide a qualitative description
of the effect of wall collisions on the uniform spin distribu-
tion across both diffusion regimes [63]. Our model lays the
groundwork for treatments of such systems by considering
non-Markovian motional dynamics.

Our results highlight the multimode nature of the dynam-
ics. As exemplified for the applications considered in Sec. IV,
one often needs to account for multiple diffusion modes, with

the high-order modes introducing additional quantum noise
or reducing fidelities. As a rule of thumb, if ε is the allowed
infidelity or excess quantum noise, then one should include
the first ≈ε−1 modes in the calculations.

Since thermal motion is inherent to gas-phase systems, our
model could be beneficial to many studies of nonclassical
spin gases and particularly to warm alkali-metal vapors. One
such example is a recent demonstration of transfer of quantum
correlations by the diffusion of alkali-metal atoms between
different spatial regions [29]. Other examples involve a single
active region, e.g., when spin squeezing is performed using a
small probe beam over a long probing time, with the goal of
coupling efficiently to the uniform diffusion mode in a coated
cell [17,21]. The resulting spatiotemporal dynamics can be
described using our model in order to assess the obtainable
degree of squeezing. In particular, our model predicts that high
buffer gas pressure would improve the lifetime of squeezed
states when small probe beams are employed (e.g., when us-
ing optical cavities or when high probe intensities are needed),
thus encouraging the realization of such experiments.
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APPENDIX A: DIFFUSION-INDUCED NOISE

In the main text, we formulate the dynamics of a collective
spin operator as driven from local density fluctuations. For
deriving Eq. (3), we use the Lagrangian version of Eq. (2),
where the noise is defined for each particle individually:

∂na/∂t = D∇2na + ∇[η(a)(t )
√

na]. (A1)

Here η(a)(t ) is a white Gaussian process with vanishing
mean 〈η(a)〉c = 0 and with correlations 〈η(a)

i (t )η(a′ )
j (t ′)〉c =

2Dδi jδaa′δ(t − t ′). Substituting these into Eq. (1) provides the
definition for the quantum noise components as

f̂μ(r, t ) =
Na∑

a=1

ŝ(a)
μ (t )∇[η(a)na(r, t )]. (A2)

Following the lines of Ref. [47], we consider an alternative,
equivalent definition

f̂μ(r, t ) = ∇[ŝμ(r, t )η(r, t )/
√

n], (A3)

as also provided in the main text. According to both defini-
tions, f̂ is a stochastic Gaussian process (linear operations
on a Gaussian process accumulate to a Gaussian process)
with a vanishing mean. Consequently, the equivalence of
the two definitions is a result of the equality of the noise
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correlations:

〈 f̂μ f̂ ′
ν〉c =

〈∑
i

∇i

(∑
a

ŝ(a)
μ naη

(a)
i

)

×
∑

j

∇′
j

(∑
a′

ŝ(a′ )
ν na′η

(a′ )
j

)〉
c

= 2D(∇ · ∇′)

(∑
a

ŝ(a)
μ ŝ(a)

ν na

)
δ(r − r′)δ(t − t ′)

= 2D(∇ · ∇′)

∑
aa′ ŝ(a)

μ naŝ(a′ )
ν na′∑

a′ na′
δ(r − r′)δ(t − t ′)

= 2D(∇ · ∇′)(ŝμŝ′
ν/

√
nn′)δ(r − r′)δ(t − t ′)

=
〈∑

i

∇i(ŝμηi/
√

n) ×
∑

j

∇′
j (ŝ

′
νη

′
j/

√
n′)

〉
c

, (A4)

where we used the identity na(r, t )na′ (r, t ) =
δaa′na(r, t )na′ (r, t ). Here and henceforth, we use tags
to abbreviate the coordinates (r′, t ′) for a field, i.e.,
F ′ = F (r′, t ′) and F = F (r, t ).

The quantum noise, the commutation relations of which are
shown in Eq. (4), conserves the spin commutation relations
[ŝμ(r, t ), ŝν (r′, t )] = iεξμν ŝξ δ(r − r′). This can be seen from

〈[ŝμ(r, t + dt ), ŝν (r′, t + dt )] − [ŝμ(r, t ), ŝν (r′, t )]〉c

= iεξμνδ(r − r′)〈ŝξ (r, t + dt ) − ŝξ (r, t )〉c (A5)

and then

iεξμνD(∇ + ∇′)2[ŝξ δ(r − r′)]dt

= iεξμνD(∇2ŝξ )δ(r − r′)dt, (A6)

where the last equality stems from (∇ + ∇′)δ(r − r′) = 0.
In Sec. III, we focus on highly polarized ensembles, where

the dynamics is described by the bosonic annihilation oper-
ator â, under the Holstein-Primakoff approximation. Under
these conditions, the thermal noise operating on the bosonic
excitations becomes f̂ = ∇(âη/

√
n). In addition, the same

conditions ensure that â†â = 0, â(r, t )â†(r′, t ) = δ(r − r′),
and â(r, t )â†(r′, t )δ(r − r′) = nδ(r − r′), thus providing

〈 f̂ f̂ ′†〉c = 〈∇âη/
√

n ∇′(â†)′η′/
√

n′〉c

= −2D∇2δ(r − r′)δ(t − t ′), (A7)

and 〈 f̂ † f̂ ′〉c = 0. Therefore, the noise becomes a vacuum
noise and conserves the commutation relations of the bosonic
operators. We denote the correlations of the diffusion noise in
the bulk as C(r, r′) = −2D∇2δ(r − r′).

APPENDIX B: MODEL FOR WALL COUPLING

We adopt a simplified model for describing the scattering
of atoms off the cell walls. The model assumes that the wall
coupling is stochastic and Markovian, thus resulting in an
exponential decay of the scattered spin, and that the noise due
to diffusion in the bulk vanishes within a thin boundary layer
at the wall. This leads to the scattering described by Eq. (6).
The accompanying noise processes for atoms a and a′ satisfy

the relations

[
ŵμ

a (t ), ŵν
a′ (t ′)

] = iεμνξ e−1/N (1 − e−1/N )ŝ(a)
ξ δaa′

�δ(t − t ′)
v̄

,

(B1)

where μ, ν = x, y, z. Here � = (e1/N − 1)−1λ/3 is the effec-
tive correlation distance of the wall-scattering noise, defined
such that the commutation relations of the spin operators are
conserved for all diffusion modes, i.e., for the entire cell (bulk
and boundary). It changes monotonically from � = e−1/Nλ/3
for spin-destructing walls (N � 1) to � = Nλ/3 for spin-
preserving walls (N � 1).

The continuous operator ŵ(r, t ) used in the main text to
describe the noise due to interactions with the cell walls is
defined as ŵ = ∑

a ŵana. It is the analog of ŵa(t ), like ŝ is to
ŝa. It vanishes for positions r the distance of which from the
boundary is larger than � , and its commutation relations are

〈[ŵμ, ŵ′ν]〉c = iεμνξ e−1/N (1 − e−1/N )�/v̄

× ŝξ (r, t )δ(r − r′)δ(t − t ′). (B2)

The last expression is defined only for coordinates r and r′
on the cell boundary and vanishes elsewhere. As an example,
for a rectangular cell with a wall at x = L/2, we shall define
coordinates on the boundary r⊥ = yŷ + zẑ and substitute
δ(r − r′) = 1

�
δ(y − y′)δ(z − z′) at x = x′ = L/2. For a spher-

ical cell with a wall at |r| = R, we use δ(r − r′) = 1
�

δ(�−�′ )
R2 ,

where � is the angular position of coordinate r.
Using ŵ(r, t ), the scattering matrix for the spin-density

operator becomes S ŝ = e−1/N · ŝ + ŵ. We write Eq. (7) for the
spin-density operator using the noise field ŵ. In addition, ŵ is
defined only on the boundary, such that (n̂ · ∇)ŵ|boundary ∝
δ′(0) and therefore vanishes.

Finally, under the Holstein-Primakoff approximation, we
use Eq. (B2) to find the noise operating on â due to wall
scattering. The operator ŵ = ŵ−/

√
2|sz| becomes a vacuum

noise, satisfying 〈ŵ†ŵ′〉c = 0, and for r and r′ on the cell
boundary

〈ŵŵ′†〉c = 2e−1/N (1 − e−1/N )�/v̄δ(r − r′)δ(t − t ′). (B3)

Considering a general spin distribution, the noise due to
the walls exists only in a volume of order �S, where S
is the cell surface area, while the noise due to diffusion in
the bulk exists in the entire volume V . The ratio of the two
scales as 〈ŵŵ′†)〉c/〈 f̂ f̂ ′†)〉c ∝ �S/V ∝ λ/R, where R is the
typical dimension of the cell. Consequently, in our considered
diffusive regime λ � R, the diffusion noise dominates over
that of the wall scattering for nonuniform spin distributions.

APPENDIX C: SOLVING THE DIFFUSION-RELAXATION
BLOCH-HEISENBERG-LANGEVIN EQUATIONS

The diffusion-relaxation equation in the Bloch-
Heisenberg-Langevin formalism, in the limit of a highly
polarized spin gas, is presented in Sec. III. Here we first
solve Eqs. (8) and (9) for a simplified 1D case by following
the method described in the main text. We provide explicit
expressions for the mode-specific noise sources due to motion
in the bulk and at the boundary. Finally, we provide tabulated
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FIG. 5. Graphical solutions for the Robin boundary condition.
Here we solve the 1D equations for a system of length L = 1 cm and
mean free path of λ = 0.5 μm (characteristic of 100 Torr of buffer
gas) and for different values of N .

solutions for the three-dimensional cases of rectangular,
cylindrical, and spherical cells.

Consider a 1D cell with a single spatial coordinate −L/2 �
x � L/2. The functions uk (x) that solve the Helmholtz
equation ∂2uk/∂x2 + k2uk = 0 are the relaxation-diffusion
modes, where the decay rates � introduced in the main
text are � = Dk2. These solutions are u+

k = A+
k cos(k+x) and

u−
k = A−

k sin(k−x), composing symmetric and antisymmetric
modes. The annihilation operator decomposes into a super-
position â(x, t ) = ∑

k,± â±
k (t )u±

k (x). To further simplify the
example, we take only symmetric spin distribution and sym-
metric noise into consideration, i.e., we keep only the modes
u+

k and omit the “+” superscript. Note that a physical noise is
random and generally has no defined symmetry, but it can be
decomposed into components with well-defined symmetry.

The bulk diffusion equation becomes ∂ âk/∂t = i[H, âk] −
Dk2âk + ∫ L/2

−L/2 f̂ ukdx. We break the boundary equation into
a homogeneous part, where the noise is omitted, and an
inhomogeneous part, which includes the noise. The for-
mer can be decomposed into the different modes and is
simplified to the algebraic equation cot(kL/2) = 2 1+e−1/N

1−e−1/N λk
[72].

For general values of N , this is a Robin boundary condition,
which can be solved numerically or graphically as presented
in Fig. 5. The discrete solutions kn define a complete and
orthonormal set of discrete modes un = An cos(knx), span-
ning all symmetric spin distributions in the 1D cell, and∫ L/2
−L/2 u∗

mundx = δnm. These provide the discrete decay rates
�n.

For example, in the Dirichlet case of destructive walls
(Nλ/L � 1), kn = (2n + 1)π/L. The annihilation operators
of the various modes are ân(t ) = ∫ L/2

−L/2 u∗
n(x)â(x, t )dx, and the

noise operators are f̂n(t ) = ∫ L/2
−L/2 u∗

n(x) f̂ (x, t )dx and ŵ(t ) =
[ŵ(L/2, t ) + ŵ(−L/2, t )]/2.

The treatment of f̂n as a bulk source term operating on
independent modes is a common technique [73]. It differs,
however, from the treatment of the noise at the boundaries.

We deal with this term by defining auxiliary fields

â(x, t ) = p̂(x, t ) +
∑

n

ĥn(t )un(x), (C1)

as we desire to use p̂(x, t ) to imbue the wall noise as a source
acting on the modes ân, while ĥn solves the homogeneous
equations in the absence of wall-induced fluctuations. There-
fore p̂(x, t ) is defined such that ∇2 p̂(x, t ) = 0.

In our 1D symmetric case, p̂(x, t ) = p̂(t ) is uniform.
Writing the full boundary equation for â provides p̂(t ) =
ŵ(t )/(1 − e−1/N ). We decompose p̂(t ) into the modes to
obtain p̂n(t ) = ∫ L/2

−L/2 p̂(t )un(x)dx = 2An sin(knL/2) p̂(t )/kn.
Substituting this in Eq. (8) provides the equation for the
homogeneous mode operators ĥn.

In the case of a magnetic Zeeman Hamiltonian H = iω0Ŝz,
we find

∂ ĥn/∂t = −iω0ĥn − �nĥn + f̂n − iω0 p̂n − ∂ p̂n/∂t, (C2)

the solutions of which are

ĥn = e−(iω0+�n )t ĥn(0) +
∫ t

0
e−(iω0+�n )(t−τ )

[
f̂n(τ )

−(
iω0 + ∂

∂τ

)
p̂n(τ )

]
dτ. (C3)

Substituting into ân(t ) = p̂n(t ) + ĥn(t ) and differentiating
with respect to t provides the evolution of the annihilation
operators of the spin modes

∂ ân/∂t = −(iω0 + �n)ân + f̂n + f̂ w
n , (C4)

where

f̂ w
n = �n

∫ L/2

−L/2
u∗

n(x) p̂(x, t )dx = 2An�n sin(knL/2)

(1 − e−1/N )kn
ŵ (C5)

is the quantum noise due to wall collisions. Finally, we can
combine the two noise terms and obtain the total, mode-
specific, noise operator

Ŵn =
∫ t

0
e−[iω0+D(k±

n )2](t−τ )[ f̂n(τ ) + f̂ w
n (τ )

]
dτ, (C6)

appearing in Eq. (10).
Under the influence of the noise sources Ŵn and the

dissipation �n, the spin operators of the diffusion modes
obey the fluctuation-dissipation theorem, and their commuta-
tion relations are conserved, resulting from 〈( f̂n′ + f̂ w

n′ )( f̂ †
n +

f̂ w†
n )〉c = 2�nδn′nδ(t − t ′) and 〈( f̂ †

n′ + f̂ w†
n′ )( f̂n + f̂ w

n )〉c = 0.
Note that the conservation of local commutation relations is
already presented in Appendices A and B (where f̂ applies
for the bulk and ŵ for the boundary) without the mode de-
composition. Notably, however, it also holds for the nonlocal
(diffusion) modes.

For completeness, we provide in Table I the diffusion-
relaxation modes for rectangular, cylindrical, and spherical
cells. Various applications, such as those involving collisional
(local) coupling between two spin ensembles, also require the
overlap coefficients cmn = ∫

V d3rA∗
m(r)Bn(r) between diffu-

sion modes Am(r) and Bn(r). These are presented in Table II
for spherically symmetric modes, where Am(r) are modes for
highly destructive walls (N � 1), and Bn(r) are for inert walls
(N � L/λ). These conditions are typical for a mixture of
alkali-metal vapor and noble gas, as discussed in Sec. IV.
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APPENDIX D: FARADAY ROTATION
MEASUREMENT SETUP

In Sec. IV, we consider two experimental setups where
the transverse component of a polarized spin ensemble is
measured by means of the Faraday rotation. This scheme is
common in alkali-metal spin measurements [14,32,74,75]. As
illustrated in Fig. 2(a), we consider a cylindrical cell with
radius R and length L, with the cylinder axis along x̂. The spins
are polarized along ẑ, parallel to an external applied magnetic
field B = Bẑ. We use ρ and ϕ as the cylindrical coordinates,
and x as the axial coordinate.

A linearly polarized probe beam travels along x̂ with a
Gaussian intensity profile IG(r) = I0 exp(−2ρ2/w2

0 ), where
w0 is the beam waist radius. We assume a negligible beam
divergence within the cell and require the normalization∫

V I2
G(r)d3r = 1, so that (I0)−2 = πLw2

0 (1 − e−4R2/w2
0 )/4.

The probe frequency is detuned from the atomic transition,
such that the probe is not depleted and does not induce
additional spin decay.

The linear polarization of the probe rotates due to the
Faraday effect, with the rotation angle proportional to the
spin projection along the beam propagation direction. There-
fore, measurement of the rotation angle provides a mea-
surement of ŝx weighted by its overlap with the beam pro-
file. Precisely, the operator x̂G(t ) = ∫

V d3rIG(r)x̂(r, t ), where
x̂(r, t ) = [â(r, t ) + â†(r, t )]/2, is measured in this scheme
[17].

We identify the atomic diffusion modes in the cylindri-
cal cell as un(r). Note that in Table I the modes require
several labels, which we replace here with a single label n
for brevity. We decompose the spin operator and the probe
intensity profile using the modes x̂(r, t ) = ∑

n x̂n(t )un(r) and
IG(r) = ∑

n I (G)
n un(r), where x̂n(t ) = (ân + â†

n)/2 and I (G)
n =∫

V d3rIG(r)u∗
n(r). Using these, we express the measured spin

operator as x̂G(t ) = ∑
n I (G)

n x̂n(t ).
We calculate the spin noise spectrum from its formal

definition

Sxx( f ) = lim
T →∞

1

T

∫ T

0

∫ T

0
x̂G(τ )x̂G(τ ′)e2π i f (τ−τ ′ )dτdτ ′ (D1)

utilizing the temporal evolution of the modes as given by
Eq. (10), and including the noise properties Ŵ†

n′ (t )Ŵn(t ) = 0
and Ŵn′ (t )Ŵ†

n (t ) = (1 − e−2�nt )δn′n derived from Appendix
C. The spin noise spectral density appearing in Eq. (11) holds
for both polarized and unpolarized ensembles, with

P̃ =
{

1 polarized
2(S + 1)/3 unpolarized (D2)

where S is the single-particle spin magnitude.
For the considered geometry, the standard quantum limit

is 〈Ŝ2
x〉 � Nbeam/4 = nVbeam

4
[1−exp(−2R2/w2

0 )]2

1−exp(−4R2/w2
0 )

, where Nbeam =
n[

∫
V IG(r)d3r]2/

∫
V I2

G(r)d3r is the number of atoms in the
beam, and Vbeam = πLw2

0 is the beam volume [76].

[1] W. Happer, Rev. Mod. Phys. 44, 169 (1972).
[2] W. Happer and A. C. Tam, Phys. Rev. A 16, 1877

(1977).
[3] O. Katz and O. Firstenberg, Nat. Commun. 9, 2074 (2018).
[4] M. V. Balabas, T. Karaulanov, M. P. Ledbetter, and D. Budker,

Phys. Rev. Lett. 105, 070801 (2010).
[5] T. G. Walker and W. Happer, Rev. Mod. Phys. 69, 629 (1997).
[6] T. R. Gentile, P. J. Nacher, B. Saam, and T. G. Walker, Rev.

Mod. Phys. 89, 045004 (2017).
[7] W. Happer, Y.-Y. Jau, and T. Walker, Optically Pumped Atoms

(Wiley, New York, 2010).
[8] J. M. Brown, S. J. Smullin, T. W. Kornack, and M. V. Romalis,

Phys. Rev. Lett. 105, 151604 (2010).
[9] D. Sheng, S. Li, N. Dural, and M. V. Romalis, Phys. Rev. Lett.

110, 160802 (2013).
[10] D. Budker and M. Romalis, Nat. Phys. 3, 227 (2007).
[11] D. Budker and D. F. J. Kimball, Optical Magnetometry

(Cambridge University, Cambridge, England, 2013).
[12] S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. L. Smith,

Nature (London) 431, 49 (2004).
[13] I. M. Bloch, Y. Hochberg, E. Kuflik, and T. Volansky, J. High

Energy Phys. 01 (2020) 167.
[14] B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature (London)

413, 400 (2001).
[15] J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K.

Hammerer, I. Cirac, and E. S. Polzik, Nature (London) 443,
557 (2006).

[16] K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M.
Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and
E. S. Polzik, Nat. Phys. 7, 13 (2011).

[17] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Rev. Mod.
Phys. 82, 1041 (2010).

[18] M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S.
Zibrov, and M. D. Lukin, Nature (London) 438, 837 (2005).

[19] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V.
Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, Nature
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