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Quantum Interface for Noble-Gas Spins Based on Spin-Exchange Collisions
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An ensemble of noble-gas nuclear spins is a unique quantum system that could maintain coherence for
many hours at room temperature and above, owing to exceptional isolation from the environment. This
isolation, however, is a mixed blessing, limiting the ability of these ensembles to interface with other
quantum systems coherently. Here we show that spin-exchange collisions with alkali-metal atoms ren-
der a quantum interface for noble-gas spins without impeding their long coherence times. We formulate
the many-body theory of the hybrid system and reveal a collective mechanism that strongly couples the
macroscopic quantum states of the two spin ensembles. Despite their stochastic and random nature, weak
collisions enable entanglement and reversible exchange of nonclassical excitations in an efficient, con-
trollable, and deterministic process. With recent experiments now entering the strong-coupling regime,
this interface paves the way toward realizing hour-long quantum memories and entanglement at room
temperature.
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I. INTRODUCTION

Macroscopic systems exhibiting quantum behavior at or
above room temperature are of great scientific interest. One
such prominent system is a hot vapor of alkali-metal atoms
enclosed in a vacuum cell. The collective spin state of
these ensembles, consisting of as many as 1014 atoms, has
been used to demonstrate quantum spin squeezing, storage
and control of single-excitation quanta, and entanglement
at room temperature [1–18]. Despite the rapid thermal
motion and atomic collisions, the coherence time of the
collective spin in these studies reaches milliseconds and
beyond. In some settings, it is unaffected by frequent spin-
exchange collisions [18–20] and is essentially limited by
the electron spins’ coupling to their surroundings.

Odd isotopes of noble gases, such as 3He, possess a
nonzero nuclear spin. This spin is optically inaccessible
and well protected from the external environment by the
enclosing, full, electronic shells and is therefore extremely
long-lived. Noble-gas spin ensembles have demonstrated
lifetimes T1 exceeding hundreds of hours and coherence
times T∗

2 of 100 h at or above room temperature [21–24]. It
is to be expected that the collective nuclear spin in these
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ensembles, similarly to the collective electronic spin in
alkali vapor, can be brought to the quantum limit and uti-
lized for quantum optics and sensing applications. Several
studies have proposed the use of collisions with optically
excited metastable 3He atoms to generate and read out
nonclassical states of ground-level 3He spins, relying on
collisional exchange of electronic configurations that leads
to adiabatic transfer of the quantum state [25–28].

Here we study a different mechanism forming a quan-
tum interface with noble-gas spins. The mechanism relies
on the stochastic accumulation of weak spin-exchange col-
lisions, directly coupling between the collective spins of
polarized atomic gases and thus not limited to adiabatic
transfer rates. Recently, we experimentally demonstrated
the coherent coupling between alkali-vapor spins and
noble-gas spins in the regime where the coherent exchange
rate dominates the spin rotation rate [29]. Additionally,
we have demonstrated a bidirectional interface between
light and noble-gas spins, using the optically accessible
alkali spins as mediators [30]. These experiments establish
the coherent nature of the collective coupling for classi-
cal (coherent) states. If the coupling is indeed quantum
(i.e., if it transfers nonclassical correlations between the
spin ensembles), then it can be used for quantum informa-
tion applications, such as quantum memories and remote
entanglement with long-lived noble-gas spins [31–33].

Here we provide a theoretical description of the emer-
gent collective coupling between the spins of polarized
alkali and noble-gas atoms. We analyze the effect of weak
spin-exchange collisions using a many-body formalism
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and find that they can efficiently couple the collective
quantum excitations of the two ensembles, with negligi-
ble quantum noise added due to the collisions’ stochas-
ticity. We derive the strong-coupling conditions, where
the quantum-coherent exchange dominates over the relax-
ation. We use numerical many-body simulations and a
detailed analytical model to study the controllable peri-
odic exchange of nonclassical states between the spin
ensembles, further attesting to the quantum nature of the
interface, and discuss potential applications. Finally, we
outline practical experimental conditions for the efficient
exchange of nonclassical states between the alkali and
noble-gas ensembles.

This paper is organized as follows. In Sec. II we describe
the system under study and review the mean-field model,
which is commonly used to describe its semiclassical
dynamics. In Sec. III we present numerical stochastic sim-
ulations that demonstrate quantum dynamics of a few spin
excitations between the collective spin states studied in this
work. In Sec. IV we present a detailed many-body model
and derive the equations of motion for the collective states
of the spin gases. In Sec. V we discuss different coupling
regimes of the two spin gases. In Sec. VI we demonstrate
the formalism for the exchange of nonclassical states and
discuss their potential application for quantum meterology.
In Sec. VII we numerically solve the equations of motion
of the detailed model and demonstrate quantum exchange
of states for a feasible experimental configuration. Finally,
in Sec. VIII we conclude and discuss the role of imperfect
polarization on the results.

II. SYSTEM AND MEAN-FIELD MODEL

Noble-gas spins can be accessed via spin-exchange col-
lisions with alkali-vapor atoms. Consider a gaseous mix-
ture of NB noble-gas atoms with nuclear spin 1/2 and NA �
NB alkali-metal atoms, all enclosed in a heated spherical
cell of volume V and undergoing frequent collisions. A
collision between noble-gas atom b and alkali atom a is
governed by the Fermi-contact interaction and described
by the evolution operator exp(−iφk̂b · ŝa), where k̂b is
the noble-gas nuclear spin operator, ŝa is the alkali elec-
tronic spin operator of the colliding atoms labeled a and
b, respectively, and φ is the mutual precession angle; see
Figs. 1(a) and 1(b) [34–36]. While φ varies between col-
lisions depending on the atoms’ random trajectories, its
value is always positive [37,38]. This is an important prop-
erty of the isotropic Fermi-contact interaction, leading to a
nonzero mean precession 〈φ〉 during collisions.

Between collisions, the electron and nuclear spins of the
alkali atoms are altered by their strong hyperfine coupling.
Consequently, the slow dynamics of alkali atoms having
nuclear spin I > 0 is determined by the operator sum f̂a =
ŝa + îa, where îa is the nuclear spin operator of alkali atom
a. We focus on the conditions of high alkali atomic density

and small Zeeman splitting. Under these conditions, the
alkali Zeeman states are populated with a spin-temperature
distribution, and f̂a = qŝa, where q is the Larmor slowing-
down factor [2I + 1 < q < 4I 2/3 + 4I/3 + 1 depending
on the degree of polarization; see Eq. (18)] [35,39].

The accepted formalism for describing the dynamics
of the spin ensembles uses the mean-field Bloch equa-
tions [11]:

∂t〈f̂〉 = nBζ 〈k̂〉 × 〈f̂〉 + nBkSEq〈k̂〉 − γA〈f̂〉,
∂t〈k̂〉 = nAζ 〈f̂〉 × 〈k̂〉 + nAkSE〈f̂〉/q − γB〈k̂〉.

(1)

Here nA = NA/V and nB = NB/V are the atomic densities,
ζ = 〈σvφ〉/q denotes the mean-field interaction strength,
where σ is the spin-exchange cross section and v is
the relative thermal velocity, and kSE ≡ (1/4)

〈
vσφ2

〉
is

the binary spin-exchange rate coefficient [11]. The first
term in the expressions in Eq. (1) describes the mutual
average precession of the two mean spins. The second
term represents an incoherent transfer of spin polariza-
tion from one species to another (conserving the total
spin) [35]; it is commonly used to initially polarize the
noble-gas spins via so-called spin-exchange optical pump-
ing (SEOP) [34]. The alkali-metal spins are strongly
coupled to the environment, leading to spin rotation at
rate

γA = nB(kSE + σSRv)+ nAσSDvA/2, (2)

consisting of the spin-exchange interaction with the noble-
gas nuclei, collisional spin-rotation coupling (cross section
σSR and thermally averaged reduced velocity v), and
spin destruction via binary collisions of alkali-metal spins
(cross section σSD and mean atomic velocity vA) [11]. The
relaxation rate of the noble-gas spins is given by

γB = kSEnA + T−1
B , (3)

where TB is the coherence time in the absence of alkali
atoms, usually limited by inhomogeneity of the magnetic
field [23,34]. Typically, γB ≪ γA, where for hybrid sys-
tems in a centimeter-sized cell, γB is a fraction of 1 h−1

and γA is in the range from 10 to 1000 s−1.
The mean-field equations, Eq. (1), implicitly assume

that any quantum correlation developed between differ-
ent atoms due to collisions is rapidly lost. Therefore,
this model is insufficient for describing the dynamics of
nonclassical (i.e., quantum) spin states.

III. SIMPLIFIED MANY-BODY MODEL

A. Collective spin states

We describe the macroscopic quantum states of the spin
ensembles using collective spin operators [2]. Each col-
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FIG. 1. Quantum interface for noble-gas spins via spin-exchange collisions. (a) Coherent interaction during a collision between
alkali-metal electronic spin ŝa (red) and noble-gas nuclear spin k̂b (blue). The two spins mutually precess and acquire an angle φ � 1
while conserving the total spin, where φ is random and depends on the collision kinematics. (b) Stochastic sequence of collisions. Spin
exchange occurs over a few picoseconds when the valence electron’s wave function (pink) overlaps with the noble-gas nucleus (blue).
(c) For polarized ensembles, multiple collisions between different atoms accumulate to a coherent dynamics of bosonic collective-spin
excitations, described by local quantum operators â(r) (alkali) and b̂(r) (noble gas) and a coupling rate J . Incoherent spin dynamics,
which enables initialization via spin-exchange optical pumping, play a minor role for φ ≪ 1. (d) Diffusion of the gas atoms and the
boundary conditions in the cell define nonlocal spin modes. The lowest-order spatial modes â and b̂ govern the coherent evolution of
the collective quantum spins (see Sec. IV D and Ref. [40]).

lective operator is a symmetric superposition of the spins
in the cell, where F̂ = ∑NA

a=1 f̂a is the collective alkali
spin operator and K̂ = ∑NB

b=1 k̂b is the collective noble-gas
spin operator. Here we focus on the particular regime of
highly polarized ensembles, with most of the spins point-
ing downwards (−ẑ) [1–3]. In this regime, the operators
F̂z and K̂z can be approximated by their classical expec-
tation values Fz = −pANAq/2 and Kz = −pBNB/2, where
pA, pB ≤ 1 are the degrees of spin polarization (pA = pB =
1 for the ideal preparation of fully polarized ensembles).
The quantum state of the collective spins is then fully cap-
tured by the ladder operators F̂± = F̂x ± iF̂y and K̂± =
K̂x ± iK̂y . Pictorially, for polarized ensembles, these oper-
ators describe a small tilt of the macroscopic spin vector,
accompanied by spin uncertainty that scales as

√
NA for the

alkali ensemble and
√

NB for the noble gas.
To see how quantum spin excitations are associated

with these operators, we apply the Holstein-Primakoff
transformation [2], which describes the collective states
in terms of excitations of bosonic fields. We define
the annihilation operators of the two ensembles as â =
F̂−/

√
2|Fz| and b̂ = K̂−/

√
2|Kz|. The state |0〉A |0〉B, with

zero spins pointing upwards, is identified as the vac-
uum, and the creation operators â† and b̂† flip upwards
one alkali or noble-gas spin. For the special case of
coherent spin states, the dyanmics is captured in the
mean-field model [Eq. (1)] by use of the transforma-
tions 〈â〉 = √

NA/qpA〈f̂ −〉 and 〈b̂〉 = √
NB/pB〈k̂−〉, which

associate the collective displacements with the mean spin
of the ensembles. In what follows, we discuss quan-
tum states that can be represented by these operators,
whose dynamics cannot be described by the mean-field
model.

B. Stochastic simulation

To examine the quantum nature of the alkali–noble-gas
interaction, we first develop a simplified stochastic many-
body simulation. The simulation tracks the quantum state
of many spins that randomly collide. It computes their
Hamiltonian dynamics in the absence of external sources
of relaxation, by formally setting γA and γB to zero in
Eqs. (2) and (3). For simplicity, the simulation assumes
that I = 0 (i.e., f̂a ≡ ŝa), that all spins are nearly polar-
ized, and that all spins are equally likely to collide with
each other. We alleviate these assumptions and consider
additional relaxation mechanisms in Sec. IV.

In each simulation time step, we pair each electron spin
with a single random noble-gas spin and describe their
evolution due to collision. The duration of each time step
corresponds to the mean time between collisions of an
alkali atom with any of the noble-gas atoms τ = 1/(nBσv).
The collision between spins a and b at time step n is
described by the exchange Hamiltonian

V (n)ab = φ(n)a

τ

(
ŝazk̂bz + 1

2
ŝ+

a k̂−
b + 1

2
k̂+

b ŝ−
a

)
, (4)

where ŝ+
a , ŝ−

a , k̂+
b and k̂−

b are ladder spin operators. The
collision angle φ(n)a is a random variable, sampled from
a Gaussian distribution N (〈φ〉, δφ) with mean 〈φ〉 and
typical standard deviation δφ = 〈φ〉, where 〈φ〉 � 1 is an
input parameter.

The simulation also includes the response of the alkali
spins to an axial magnetic field via the Hamiltonian term
gABz

∑
a ŝaz, where gA is the gyromagnetic ratio of the
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alkali spins. As discussed in Sec. V, we choose the par-
ticular magnetic field gABzτ = 〈φ〉/2 in which the pre-
cession of the two gases is synchronized (ωA = ωB), thus
maximizing the coupling between the two spin gases.

The scattering matrix per electron spin a at time step n
is then given by

U(a)
n =

∑

b

κ
(n)
ab e

i
2φ

(n)
a

[
i sin( 1

2φ
(n)
a ) (|↓↑〉 〈↑↓| + |↑↓〉 〈↓↑|)

− 2 sin2( 1
4φ

(n)
a ) (|↑↓〉 〈↑↓| + |↓↑〉 〈↓↑|)] + 1,

(5)

where |↓↑〉 ≡ |↓a〉A |↑b〉B , |↑↓〉 ≡ |↑a〉A |↓b〉B , and 1 is
the identity operator. The pair selection is encapsulated
in the random variable κ

(n)
ab , with κ

(n)
ab = 1 if spins a and

b collide and κ
(n)
ab = 0 otherwise. We constrain the pair-

ing process by κ
(n)
ab κ

(n)
cb = 0 for a �= c, ensuring that each

noble-gas spin interacts at most with a single electron spin
at each time step. Finally, the wave function of the system
evolves as

|ψ(n + 1)〉 = �aU(a)
n |ψ(n)〉. (6)

We numerically use two different Hilbert subspaces in
which nearly all spins point downwards. One subspace
describes a single spin-up excitation, represented by the
wave functions

|ψ(t)〉 =
NA+NB∑

i=1

ci(t)| ↓ . . . ↓↑i↓ . . . ↓〉a&b

for a set of complex-valued coefficients ci(t) satisfying∑
i |ci(t)|2 = 1. We use this subspace to simulate NA =

100 and NB = 104 atoms. The second subspace, com-
prising two spin excitations, is represented by the wave
functions

|ψ(t)〉 =
NA+NB∑

i�=j

cij (t)
∣∣↓ . . . ↓↑i↓ . . . ↓↑j ↓ . . . ↓

〉
a&b

for
∑

i�=j |cij (t)|2 = 1, and we use it with NA = 30
and NB = 300. Importantly, absent external relaxations,
the single-excitation and double-excitation subspaces are
invariant to the exchange operation due to conservation of
the total spin. This enables simulation of a relatively large
number of atoms at moderate subspace dimensions.

C. Numerical results

The exchange dynamics for a single spin excita-
tion are shown in Fig. 2. We initialize the system
with either the symmetric excitation |ψ0〉 = |1〉A|0〉B ≡
N−1/2

A
∑

a f̂ +
a |0〉A|0〉B [Figs. 2(a) and 2(c)] or a localized

excitation |ψ0〉 =|↑↓ . . . ↓〉A|0〉B [Figs. 2(b) and 2(d)].
The exchange between the two ensembles emerges as a
collective phenomenon: for the symmetric Fock state, we
observe multiple, high-contrast oscillations of the pop-
ulations of the collective states, whereas for the local-
ized excitation, the oscillations are negligible and scale
with the small overlap 〈1|A |↑↓ . . . ↓〉A = 1/

√
NA. The

transfer amplitude accumulates constructively only for
the excitation that is symmetrically shared among all
spins, maximizing the periodic exchange rate and fidelity.
The rate of the collective oscillations is given by 2J =√

NA/NB〈φ〉/τ . The comparison between the evolution
of the different initial states emphasizes the collective
nature of the coupling, which is taken for granted in the
mean-field description.

Importantly, the dominance of the coherent exchange
over the incoherent transfer and dephasing relies on the
collisions being very weak. To exemplify this, we com-
pare 〈φ〉 = 2 × 10−2 [Figs. 2(a) and 2(b)] and 〈φ〉 = 10−5

[Figs. 2(c) and 2(d)], the latter corresponding to real-
istic 3He-K collisions. For 〈φ〉 = 2 × 10−2, we observe
a dephasing and thermalization of the alkali spin with
the noble-gas spins at rate γA = α〈φ2〉/4τ , with α ≤ 1,
reducing the exchange fidelity compared with that with
〈φ〉 = 10−5. For fully polarized noble-gas spins α = 1/2
when δφ � 〈φ〉 and the randomness of the collision pro-
cess results solely from randomness in pairing of col-
liding atoms. When δφ � 〈φ〉, α = 1 due to additional
randomness in collision intensity, making collisions less
correlated. The observed decay rate fully agrees with the
mean-field relaxation rate of the alkali spins, nBkSE. Note
also that the noble-gas spin dephasing γB = (NA/NB)γA
is negligible since NA � NB. We have verified that the
exchange and decoherence depend only weakly on the
chosen parameters and distributions.

Finally, we simulate the periodic bunching of two
spin excitations with 〈φ〉 = 10−5 and |ψ0〉 = |1〉A|1〉B, as
shown in Fig. 2(e). This evolution is analogous to the
nonclassical Hong-Ou-Mandel phenomenon with a beam
splitter with variable reflectivity. At t = πm/2J for any
integer m, the two excitations are bunched in either of the
two spin ensembles (analogous to the ports of the beam
splitter), generating an entangled state.

These simulations demonstrate that the collisional inter-
face supports the reversible, high-fidelity, full exchange of
nonclassical states between the two spin ensembles despite
the stochastic nature of the spin-exchange interaction in the
gas.

D. The exchange mechanism

To elucidate the physical mechanism that renders a
deterministic exchange out of random collisions, we ana-
lytically describe the quintessential case of the exchange
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FIG. 2. Stochastic simulation of the collisional interface. We solve the unitary evolution of the quantum state of NA = 100 electron
spins and NB = 104 noble-gas spins [in (e), NA = 30 and NB = 300], initialized in the state |ψ0〉. Each electron spin undergoes a
spin-exchange collision of random strength (φrandom � 1) with a randomly chosen noble-gas spin every simulation time step τ =
1; The collisions are either very weak, 〈φ〉 = 10−5 (c)–(e), or more moderate, 〈φ〉 = 2 × 10−2 (a),(b). The electron spins can be
initialized with all pointing downwards |0〉A =|↓ . . . ↓〉A (“vacuum”), or with one arbitrary spin pointing upwards f̂ +

a=1|0〉A =|↑↓
. . . ↓〉A (“localized excitation”) or in the symmetric state with a single collective excitation |1〉A = N−1/2

A
∑

a f̂ +
a |0〉A = N−1/2

A
∑

i |↓
. . . ↓↑i↓ . . . ↓〉A (“collective excitation”). The nuclear spins are initialized in either |0〉B or |1〉B. (a) An initial symmetric excitation
|ψ0〉 = |1〉A|0〉B is coherently exchanged between the two spin ensembles. The inset highlights the stochasticity of the process. The
exchange is accompanied by dephasing due to incoherent transfer of the excitation to the large noble-gas ensemble (NB � NA) via
the same process underlying SEOP. (b) The localized excitation is incoherently transferred to the noble gas. (c) Strikingly, when the
collisions are weaker, the exchange fidelities F10 and F01 oscillate with higher contrast and nearly no decay, despite the stochasticity
of the process. (d) Almost no oscillations are observed for the localized excitation. (e) When |ψ0〉 = |1〉A|1〉B, the two excitations
periodically “bunch” in a superposition of either of the spin ensembles (|2〉A|0〉B + |0〉A|2〉B), manifesting the nonclassical Hong-Ou-
Mandel phenomenon and validating the quantum beam-splitter property of the interface.

of a single spin excitation. The noble-gas spins are initial-
ized in the state |0〉B with all spins pointing down, and the
alkali spins are initialized in the nonclassical Fock state
|1〉A ≡ N−1/2

A
∑

a f̂ +
a |0〉A (i.e., a symmetric superposition

with one of the spins pointing up). After a short time t, the
system wavefunction |1〉A|0〉B evolves by Eq. (6) into

|1〉A|0〉B − iJt|0〉A|1〉B − iε|δψ〉 + O(〈φ2〉). (7)

This evolution, with Jt, ε � 1, is the onset of trans-
fer of the single spin excitation from the alkali to the
noble gas via both deterministic and stochastic contribu-
tions; the Fock state |1〉B ≡ N−1/2

B
∑

b k̂+
b |0〉B manifests the

deterministic transfer. The stochastic amplitude ε and the

stochastic wave function |δψ〉, which represents an inco-
herent mixture of excited spins, are given in Eqs. (A1) and
(A2) in Appendix A.

To quantify the corresponding transition amplitudes Jt
and ε, we average the stochastic amplitude under the
assumption that every alkali atom is equally likely to
collide with any noble-gas atom at mean time between
collisions τ . We then find that

Jt = 1
2 (〈φ〉t/τ)

√
NA/NB (8)

and that, after many collisions, the stochastic variable ε
follows the central limit theorem

ε →
√

〈φ2〉t/2τ . (9)
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These results show that, at longer times, the transition
amplitude of the deterministic term in Eq. (7) dominates
the transition amplitude of the stochastic term, resulting in
Jt � ε. It is therefore the accumulated mean effect of many
weak collisions that leads to deterministic transfer scaling
linearly with t/τ , while fluctuations add up at a reduced
rate

√
t/τ due to their incoherent nature.

IV. DETAILED MODEL OF THE MANY-BODY
PROBLEM

A. Derivation outline

We now derive an extended analytical model describ-
ing the quantum dynamics of the collective spins of the
two gases and accounting for several relaxation mecha-
nisms, finite nuclear spin of the alkali, and spatial diffusion
of the gases. The derivation steps are illustrated in Fig. 1
and correspond to the different scales of the problem.
The first step (Sec. B) provides the coherent scattering
of alkali and noble-gas pairs by short binary collisions.
We focus on the limit of weak collisions (〈φ〉 � 1), in
which the collective dynamics appear coherent. The sec-
ond step (Sec. C) yields the coarse-grained spin-exchange
interaction between local collective spins. Here we find
that symmetrically oriented spins of the ensemble within
a unit volume interact coherently, whereas the stochastic-
ity of collisions generates coupling to other, nonsymmetric
spins states. The latter manifests itself as relaxation and
introduces quantum noise, which remarkably follows vac-
uum statistics and therefore has minimal variance. The last
step (Sec. D) introduces other decay processes and spatial
diffusion in the gas. We consider the spatial modes of the
collective spin that host macroscopic nonclassical correla-
tions and identify the uniform spin mode of the noble gas
as the least-decaying mode. We then derive the equations
of motion describing the coupling between the collective
modes of the alkali and noble-gas spins. The results of this
model are discussed in Sec. V and are demonstrated for
several nonclassical states in Sec. VI.

B. Step I: Spin-exchange interaction

The Hamiltonian of the two spin ensembles we consider
is given by H (t) = H0 + V (t), where

H0 = �ahpf

∑

a

îaŝa + �ω̃Aq
∑

a

ŝa,z + �ω̃B

∑

b

k̂b,z (10)

is the noninteracting Hamiltonian of the two spin ensem-
bles, where ahpf denotes the hyperfine coupling constant in
the ground state of the alkali atom [11] and ω̃A and ω̃B are
the Larmor frequencies of the alkali and noble-gas spins
induced by an external magnetic field B = Bẑ. The micro-
scopic many-body interaction Hamiltonian, governed by

the Fermi-contact interaction [36,37], is given by

V(t) =
NA∑

a=1

NB∑

b=1

�αab(t)ŝa · k̂b. (11)

This form conserves the total spin of the colliding pairs.
The instantaneous interaction strength αab (t) between
atoms a and b is determined by the specific microscopic
trajectory of each atom.

We model the spatial degrees of freedom of the thermal
atoms as classical. Their coordinates ra(t) and rb(t) fol-
low ballistic trajectories, which are independent of the spin
state and are governed by the classical Langevin equation.
The collisions in the gas can be considered as sudden
and binary; the mean collision duration τc is only a few
picoseconds [11], whereas the mean time between colli-
sions for an alkali atom τ is a few nanoseconds at ambient
pressure. Since collisions are isolated in time (τc � τ),
the interaction strength can be approximated by a train
of instantaneous events αab (t) = ∑

i �φ
(i)
abδ(t − t(i)ab), where

φ
(i)
ab denotes the phase φ that spins a and b accumulate

during the ith collision and t(i)ab denotes the time of the col-
lision, as determined from the particle trajectories derived
in Appendix B [see Eq. (B3)].

We consider short times τ ′, typically a few tens of
picoseconds, such that τ � τ ′ � τc, for which each atom
experiences at most a single collision. In other words, we
assume that if a collision occurred between an alkali spin
a and a noble-gas spin b, then neither a nor b collided
with other atoms during τ ′. Consequently, V (t) in Eq. (11)
has no more than one appearance of each spin operator
and thus commutes with itself. Under these conditions, the
time-evolution operator is simplified to

UI
(
t + τ ′, t

) = exp
(
−i

∑

ab

τ ′∑

i

φ
(i)
ab ŝa · k̂b

)
, (12)

where
∑τ ′

i denotes the sum over all collision instances
that occur during the short time interval in which t(i)ab ∈[
t, t + τ ′]. For weak collisions, the mutual precession is

small φ(i)ab � 1, and the exponential term in Eq. (12) can
be expanded to leading orders in φ as a Dyson series:

UI ≈ U(0)
I + U(1)

I + U(2)
I + . . . . (13)

Here the lowest-order terms are U(0)
I

(
t + τ ′, t

) = 1 (the
identity),

U(1)
I

(
t + τ ′, t

) = −i
∑

ab

τ ′∑

i

φ
(i)
ab ŝa · k̂b,
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and

U(2)
I

(
t + τ ′, t

) = −1
2

∑

abcd

τ ′∑

ij

φ
(i)
abφ

(j )
cd (ŝa · k̂b)(ŝc · k̂d).

This simplified form provides for the evolution of
any quantum mechanical operator Â after time τ ′,
�Â = U†

(
t + τ ′, t

)
Â (t)U

(
t + τ ′, t

) − Â (t), where U =
e−iH0τ

′
UI is in the Heisenberg picture. Note that e−iH0τ

′

and UI commute, as explained below. Up to second order
in φ, the dynamics of Â is given by

1
τ ′�Â = − i

�

[Â,H0] − i
�

[Â,V] + L(
Â
)
. (14)

The first term is the standard Hamiltonian evolution gov-
erned by H0 and independent of φ. The second term
describes a unitary evolution during a collision with an
effective Hamiltonian

V =
∑

ab

τ ′∑

i

�

τ ′φ
(i)
ab ŝa · k̂b, (15)

which is first order in φ. The third term, L (A), is propor-
tional to φ2 and has the structure of a standard Lindblad
term:

L (A) = −1
2

∑

ab

τ ′∑

i

(φ
(i)
ab )

2
[
ŝa · k̂b,

[
ŝa · k̂b, Â

]]
. (16)

We note, however, that this operator is not associated
with a decay but is rather a second-order correction to the
unitary evolution.

The evolution of the single-spin operators ŝa and k̂b in
the time interval τ ′ are then derived from Eq. (14), yielding

�ŝa = ∑
n
∑τ ′

i φ
(i)
an [k̂n × ŝa + φ(i)an (k̂n − ŝa)/4],

�k̂b = ∑
m

∑τ ′
i φ

(i)
mb[ŝm × k̂b + φ

(i)
mb(ŝm − k̂b)/4].

(17)

This form conserves the total spin of each colliding
pair a-b, since �

(
ŝa + k̂b

) = 0. Equation (17) describes
the mutual precession of pairs of spins, as illustrated in
Fig. 1(a). This evolution is unitary to second order in
the precession angle φ, while high-order contributions are
neglected in the truncation of Eq. (13).

At longer times (tahpf � 1), the nuclear spin of the
alkali atoms is altered by the strong hyperfine interaction
with the electron, such that slow dynamics are described in
terms of f̂a. From now on, we focus on alkali ensembles
in a spin-temperature population distribution, for which

f̂a = qŝa, with the slowing-down factor q = q(I , pA) given
by [41]

q(I , pA) = 2I + 1
pA

(1 + pA)
2I+1 + (1 − pA)

2I+1

(1 + pA)2I+1 − (1 − pA)2I+1 − 1
p2

A
+ 1.

(18)

C. Step II: Local collective interaction

The slow evolution of the spins depends on the cumula-
tive effect of multiple collisions among different atoms. At
the macroscopic limit, it is formidable to keep track of the
kinematic details of all atoms, given a large set of collision
times t(i)ab and strengths φ(i)ab . Instead, we represent the exact
values of t(i)ab and φ(i)ab by their equivalent random variables:

∑τ ′
i φ

(i)
ab → κab(t, τ ′)φa(t),∑τ ′

i (φ
(i)
ab )

2 → κab(t, τ ′)φ2
a(t),

(19)

where κab
(
t, τ ′) is a Bernoulli process indicating whether

a collision between particles a and b has occurred dur-
ing the short time interval [t, t + τ ′], with τ ′ � �/ahpf. As
the phase φa depends on the kinematic parameters of the
collision, such as the impact parameter and the two-body
reduced velocity [34], we treat it as a random variable, with
mean 〈φ〉 and variance varφ. The operation 〈·〉 denotes an
average over the microscopic kinematic parameters. The
stochastic nature of φa models the randomness in the inter-
action strength, while the stochastic nature of κab models
the randomness in pairing the colliding atoms.

We derive the statistical properties of κab as a function
of the microscopic kinematic variables in Appendix B in a
small control volume, yielding

〈
κab(t, τ ′)

〉 = vστ ′w(ra − rb),
〈
κab(t, τ ′)κcd(t′, τ ′)

〉 = δacδbdτ
′δ(t − t′)

〈
κab(t, τ ′)

〉
.

(20)

Here the window function w (r) = �(l − |r|)/Vl repre-
sents a control volume Vl = 4π l3/3, where� is the Heavi-
side function and l is the coarse-graining scale (larger than
the atoms’ mean free path).

We are now set to perform spatial coarse graining. First,
we replace the discrete atomic operators with the continu-
ous operators f̂ (r, t) ≡ ∑

a f̂a (t) δ[r − ra (t)] and k̂ (r, t) ≡
∑

b k̂b (t) δ[r − rb (t)] (see Refs. [2,5]). We then per-
form the spatial convolutions f̂(r, t) → f̂(r, t) ∗ w (r) and
k̂(r, t) → k̂(r, t) ∗ w (r). Importantly, after coarse graining
the spin operators f̂ (r, t) and k̂ (r, t) become local sym-
metric operators and the spatial coordinate r supersedes
the specific particle labels. The use of these symmetric
spin operators is motivated by the results in Sec. III; for
sufficiently weak collisions, we expect that the coherent
coupling between f̂(r, t) and k̂(r, t) will be enhanced over
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the sum of incoherent couplings to other, nonsymmet-
ric spin operators. We therefore assume that the coarse-
graining volume Vl contains a large number of parti-
cles VlnA, VlnB � 1 for the central-limit theorem and the
enhancement of the coupling of symmetric modes to hold.

Using Eqs. (17), (19), and (20), we now describe the
collisional part of the evolution of f̂(r, t) and k̂(r, t) at time
intervals much longer than τ ′ by

∂tf̂ = ζ k̂ × f̂ − kSEnBf̂ + qkSEnAk̂ + F̂ex,

∂tk̂ = ζ f̂ × k̂ − kSEnAk̂ + 1
q kSEnBf̂ − F̂ex.

(21)

The first term in the expressions in Eq. (21) represents
the average mutual precession of the two symmetric spin
operators within the coarse-graining volume, with the local
interaction strength given by ζ ≡ 〈σvφ〉 /q. As it describes
coherent dynamics, it can be associated with an effective
spin-exchange Hamiltonian

Vex = �ζ

∫
d3rA

∫
d3rBδ(rA − rB)f̂(rA, t) · k̂(rB, t).

(22)

The second and third terms in the expressions in Eq.
(21) represent incoherent transfer of spin polarization
from one species to the other, while conserving the total
spin. Recall that we assume a spin-1/2 noble gas. Here
nA = ∑

a w(r − ra) and nB = ∑
b w(r − rb) denote the

local densities of the two spin ensembles, and kSE ≡
(1/4)

〈
vσφ2

〉
corresponds to the binary spin-exchange rate

coefficient [11] presented in Eq. (1). In particular, the term
kSEnBf̂/q is responsible for hyperpolarization of the noble
gas by optically pumped alkali-metal spins, underlying the
SEOP technique [11,34]. The incoherent SEOP term here
replaces the coherent L (A) defined in Eq. (16); it has the
same functional form but is now essentially incoherent
due to the coarse graining of the microscopic kinemat-
ics. Notably, incoherent effects are second order in φ, and
since 〈φ2〉/〈φ〉 ≪ 1 (typically 10−5), ζ is substantially
larger than kSE. For example, the precession angle for
a K-3He collision is 〈φ〉 ≈ ζq/σv = 1.4 × 10−5 rad, and
〈φ2〉 ≈ 4kSE/σv = 1.6 × 10−10 rad2 (see Appendix D).

The fluctuation vector operator F̂ex(r) in Eq. (21)
encompasses the coupling of the operators f̂(r) and k̂(r)
to all other nonsymmetric combinations of spins residing
within that coarse-grained unit volume at r. In Appendix
C, we derive the statistical properties of F̂ex for this sys-
tem and show that it acts as a quantum noise process
and that, for polarized states, it has vacuum statistics
[42]. Notably, the expressions in Eq. (21) are consistent
with the mean-field model when taking expectation values
and considering classical properties, as we demonstrate in
Appendix D.

D. Step III: Dynamics with diffusion and relaxation

To describe the spatial dynamics of a macroscopic
ensemble of alkali and noble-gas spins in the presence of
relaxation, we add terms to the expressions in Eq. (21) and
write the Heisenberg-Langevin equations for f̂ (r, t) and
k̂ (r, t):

∂tf̂ = − i
�

[
f̂,H′ + Vex

] + DA∇2f̂ − γAf̂ + F̂A

∂tk̂ = − i
�

[
k̂,H′ + Vex

] + DB∇2k̂ − γBk̂ + F̂B.
(23)

Here we assume standard noble-gas pressures (10−1–104

Torr), for which frequent collisions with the noble-gas
atoms render the thermal motion diffusive, as described
by the diffusion terms DA∇2f̂ and DB∇2k̂ [40]. For polar-
ized alkali vapor, the interaction-free Hamiltonian from
Eq. (10) has the simple form H0 = �

∫
d3r[ω̃Af̂z(r, t)+

ω̃Bk̂z(r, t)], and Vex is given in Eq. (22). We emphasize
that this model can describe the evolution of many-body
quantum spin states.

The expressions in Eq. (23) encapsulate the various spin
dissipation mechanisms into the relaxation rates γA and
γB, given in Eqs. (2) and (3). Because of negligible noble-
gas–cell-wall coupling, the diffusion-induced decay of the
spatially uniform mode of the noble gas vanishes [40]. The
incoherent spin-transfer terms [third term in the expres-
sions in Eq. (21)], which have a negligible effect on the
coherent dynamics, are omitted for brevity.

The Langevin noise operators F̂A and F̂B in Eq. (23)
account for fluctuations and for preserving commutation
relations under the relaxations γA and γB and diffusion [42].

As described in Sec. A, we consider highly polarized
ensembles with most spins pointing downwards (−ẑ) [1–
3], and therefore approximate the local spin operators fz =
−pAnAq/2 and kz = −pBnB/2, and apply the Holstein-
Primakoff transformation [2] to represent the collective
states as excitations of a bosonic field with local annihi-
lation operators

â (r, t) = f̂− (r, t) /
√

2|fz|,
b̂ (r, t) = k̂− (r, t) /

√
2|kz|. (24)

The creation operators â† (r, t) and b̂† (r, t) flip upwards
one alkali or noble-gas spin at position r.

When the two gases are polarized, the energy cost of
flipping a spin in one species is the sum of the Zeeman
shift (due to the external magnetic field) and the so-called
collisional shift (due to the effective magnetic field induced
by the other species) [38]. The altered Larmor frequen-
cies ωA = ω̃A − ζpBnB/2 and ωB = ω̃B − ζpAnAq/2 are
obtained when the expressions in Eq. (23) are rewritten in

010305-8



QUANTUM INTERFACE FOR NOBLE-GAS. . . PRX QUANTUM 3, 010305 (2022)

terms of â(r, t) and b̂(r, t):

∂tâ = −(
iωA + γA − DA∇2)â − iJ b̂ + F̂A,

∂tb̂ = −(
iωB + γB − DB∇2)b̂ − iJ â + F̂B.

(25)

Importantly, here we obtain the coherent spin-exchange
rate

J = ζ
√

qpApBnAnB/2, (26)

which generalizes the coherent coupling rate in Eq. (8) for
nonzero I and general spin polarizations pA and pB. This
rate is responsible for the local exchange coupling of the
two collective spins, as illustrated in Fig. 1(c). Notably, J
is proportional to the square root of the atomic densities,
which implies that the coupling is collective and benefits
from collective enhancement.

The irreversibility of the evolution in Eq. (25) is dom-
inated by alkali-spin relaxation and by spatial atomic dif-
fusion. In principle, absence the diffusion, the dynamics of
â (r, t) and b̂ (r, t) at any location r would be unitary and
deterministic for short times t � (γA + γB)

−1. That could
allow local (multimode) coupling of the two gases, owing
to the locality of the collisional interaction. In practice,
however, the diffusion term is dominant in the dynamics
of the spin gases [43]. It is therefore fruitful to consider
the spatial modes âm (t) ≡ ∫

Am (r) â (r, t) d3r and b̂n (t) ≡∫
Bn (r) b̂ (r, t) d3r, associated with orthonormal and com-

plete sets of eigenmodes Am (r) and Bn (r) of the respective
diffusion-relaxation operators DA∇2 − γA and DB∇2 − γB.
The modes Am (r) and Bn (r) are determined by the cell’s
geometry and the wall boundary condition for the spins at
the wall; see Refs. [40,44]. Typically one could assume
partial or full relaxation of alkali spins by the cell walls
(Robin boundary conditions) and no relaxation of noble-
gas spins at the walls. The corresponding eigenvalues γAm
and γBn associate a decay rate with each mode.

The dynamics of the spatial modes âm and b̂n, illustrated
in Fig. 1(d), is described by the coupled-mode equations

∂tâm = −(iωA + γAm)âm − iJ
∑

n cmnb̂n + F̂Am,
∂tb̂n = −(iωB + γBn)b̂n − iJ

∑
m c∗

mnâm + F̂Bn

(27)

with an effective coupling Jcmn that is determined
by their integrated spatial overlap coefficients cmn =∫

Am (r)B∗
n (r) d3r, being elements of a unitary matrix. The

noise terms F̂Am and F̂Bn and our protocol for numerical
solutions of these equations are given in Appendix E.

V. COUPLING REGIMES

To illustrate and consider the dynamics of the coupled
quantum spin gases, we find it fruitful to consider a simple

and analytical two-mode approximation of Eq. (27). This
solution describes the dynamics of the collective symmet-
ric mode b̂ of the noble-gas spins and the symmetric mode
of the alkali spins â defined in Sec. A. This approximation
corresponds to choosing A0 = 1/

√
V, where V is the vol-

ume of the cell, and therefore to setting cij = δi0δj 0 in Eq.
(27). The resulting simplified two-mode model is

∂tâ = −iJ b̂ + (i�− γ )â + F̂A, (28a)

∂tb̂ = −iJ â, (28b)

where the alkali decay rate γ = γA + DAπ
2/R2 incorpo-

rates the (approximate) effect of diffusion in a cell with
radius R. These equations are written in a rotating frame of
the noble-gas spins, where � = (gA − gB)B +�c denotes
the mismatch of precession frequencies of the two polar-
ized gases, with gA and gB being the gyromagnetic ratios
of the alkali and noble-gas spins. At zero magnetic field,
the detuning is biased by the mean collisional shift �c =
ζ(pAnAq − pBnB)/2 due to the difference in the effective
magnetic fields induced by one species on the other [38].
F̂A is the quantum noise operator (given in Appendix
C). The decay of the noble-gas spins is omitted here as
we are interested in timescales much shorter than their
(hours-long) decoherence time.

With the coupling rate J , detuning �, and relaxation
γ , Eq. (28) has the canonical form of a coupled two-
mode system [2]. While J cannot be varied rapidly, �(B)
can be controlled efficiently by variation of the external
magnetic field B along the polarization axis. B alters �
by predominantly altering the precession frequency of the
alkali spins, owing to the 100-fold to 1000-fold difference
in the gyromagnetic ratios gA and gB. When the interac-
tion is set off resonance |�(B)| � J , γ , the two collective
spins effectively decouple. This decoupling is often used
in sensing applications to diminish the effect of the alkali
on the noble-gas dynamics [30,45–47]. In this regime, the
alkali and noble-gas spins precess independently; the alkali
spin experiences fast relaxation at rate γ , while the noble-
gas spin maintains its long coherence time. We simulate
these dynamics first for coherent spin states, as shown in
Fig. 3(a).

Conversely, when the magnetic field is tuned to the so-
called compensation point �(B) = 0 [48], the interaction
becomes resonant, and the two spin ensembles hybridize.
The magnetic field thus acts as a controllable switch,
rapidly coupling or decoupling the two spin ensembles.
Romalis and coworkers demonstrated the alkali–noble-gas
hybridization in the critically damped regime γ � J , |�|
[48]. In this regime, the noble-gas spins inherit a large
fraction of the alkali spins’ decoherence rate and thus
thermalize before the transfer of excitations is complete,
as shown in Fig. 3(b). The overdamped regime features
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FIG. 3. Evolution of spin excitations of interacting alkali and noble-gas ensembles in different coupling regimes. Both ensembles
are initialized in coherent spin states, with the alkali spins initially having 〈â†â〉 = 1000 excitations and the noble-gas spins in the
vacuum state 〈b̂†b̂〉 = 0. (a) Decoupled modes. At large detunings � = 10J = 600γ , the spin ensembles are decoupled, and the alkali
excitations decay at rate γ . The noble-gas spins exhibit negligible exchange with the alkali spins (inset). (b) Overdamped coupling. At
� = 0, the alkali and noble-gas spins hybridize and decay, here at rate γ = 10J , exhibiting partial transfer of the excitations (inset).
(c) Strong coupling. The periodic exchange for J = 57γ at � = 0 allows coherent transfer of spin excitations. Application of a large
magnetic field at t = π/2J decouples the spin ensembles and “stores” the excitations in the noble-gas spin state (dashed line).

a large enhancement in the sensitivity to various exter-
nal fields and enables the operation as a comagnetometer
sensor [48,49].

Here we focus on the recently demonstrated regime
J � γ , which we identify as strong coupling [29]. In
this regime, the evolution is governed by the beam-splitter
Hamiltonian �J (â†b̂ + b̂†â), which leads to the exchange
of quantum states between the spin ensembles. This is
illustrated in Fig. 3(c) for coherent states, demonstrating a
coherent transfer of spin excitations, as recently observed
[29]. One can dynamically tune the exchange rate by vary-
ing the magnetic field strength. In particular, maintaining
the resonance condition �(B) = 0 for duration t = π/2J
and subsequently ramping B up to � � J yields a deter-
ministic state transfer between the two ensembles akin to a
π pulse.

The accumulated effect of the spin-exchange collisions
is coherent only as long as their incoherent contribution is
negligible. As described by the incoherent-transfer term in
Eq. (1), spin-exchange collisions introduce an additional
relaxation rate kSEnB/q into the alkali spin rotation γ .
Consequently, since nB � nA, the strong-coupling condi-
tion J � γ requires that the precession angle 〈φ〉 remains
very small, 〈φ〉 � √

qpApB
√

nA/nB < 1. Thus, strong cou-
pling of the spin ensembles relies on the weakness of the
individual spin-exchange collisions.

VI. EXAMPLES AND APPLICATIONS

In this section, we analyze the exchange process
between the alkali and noble-gas spins in the strong-
coupling regime (J � γ ). We consider the case in which
the alkali spin is initialized in a nonclassical state and
characterize the state of the noble-gas spin by the end of
the exchange. We first demonstrate the exchange for the

quintessential case of a Fock state in Sec. VI A using
the two-mode approximation. We analyze the exchange
of a spin-squeezed state in Sec. VI B, and in Sec. VI C
we discuss its potential use for quantum meteorology
applications.

A. Exchange of Fock states

We consider a system initialized in the state

|ψ (0)〉 = |m〉A |0〉B = 1√
m!
(â†)m |0〉A |0〉B , (29)

where the collective spin of the noble gas is in its vacuum
spin state |0〉B, and the collective spin of the alkali is intial-
ized in the mth Fock state, a symmetric superposition with
exactly m � NA alkali spins pointing upwards. The simple
exchange we consider corresponds to a resonant transfer,
in which for a short duration Tπ = π/2J the magnetic field
is set to satisfy �(B) = 0. Once the exchange is complete,
setting�(B) � J , γ decouples the two spin gases and ren-
ders the noble-gas spin rotation induced by the alkali spin
γ J 2/�2 negligible (i.e., much smaller than the induced
relaxation rate γ /2 under the strong-coupling conditions).

Using the two-mode solution [see Eq. (F3), which is the
integral version of Eq. (28) in the strong-coupling limit],
we substitute the time-dependent operator â(t) and find that
the state of the system at any time 0 ≤ t ≤ Tπ is given by

|ψ (t)〉 = α(t)|ψ̄ (t)〉 + β(t)|δψ (t)〉, (30)

where |ψ̄〉 is a symmetric quantum state, composed of mul-
tiples of the symmetric operators â and b̂, and |δψ〉 is an
undesired state, composed of nonsymmetric superpositions
into which the system might evolve due to relaxation and
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quantum noise. For the exchange of the Fock state, we find

α(t)|ψ̄ (t)〉 = [Û(t)]m|0〉A|0〉B, (31)

with

Û(t) ≡ e−γ t/2[cos(Jt)â† + i sin(Jt)b̂†], (32)

whereas the stochastic term is given by

β(t)|δψ〉 =
m−1∏

k=0

(ŵ†
B)

k+1[Û(t)]m−k|0〉A|0〉B. (33)

The properties of the quantum noise operator ŵ†
B, which

describes excitations of nonsymmetric spin modes, are
derived in Appendix F.

At t = Tπ , the collective Fock state is transferred to
the noble-gas spins, and the symmetric part of the wave
function becomes

|ψ̄ (Tπ)〉 = |0〉A |m〉B (34)

with a high transfer fidelity of |α(Tπ)|2 = 1 − mπγ/2J to
first order in γ /J . Despite the stochastic nature of the col-
lisional coupling, the state transfer leaves the alkali in the
vacuum spin state except for the small contribution due to
noise processes |β|2 = 1 − |α|2. Moreover, at intermediate
times, the two spin gases become entangled, with maximal
entanglement obtained at t = Tπ/2. For example, if the
alkali is initialized with a single spin excitation (m = 1),
the symmetric wave function becomes

|ψ̄ (Tπ/2)〉 = (|1〉A |0〉B + i |0〉A |1〉B)/
√

2, (35)

which manifests entanglement between the two spin
ensembles with fidelity |α(Tπ/2)|2 = 1 − πγ/4J .

We illustrate the exchange dynamics in Fig. 4(a) using
the two-mode approximation with J = 55γ . The alkali
spin ensemble is initialized in a Fock state with two spin
excitations, and the noble-gas spin is initialized in a vac-
uum. We present |α(t)|2, which describes the probability
of transferring the two excitations to the uniform mode of
the noble-gas spin and leaving the alkali spin in the vac-
uum state, i.e., |〈ψ(t)| (|0〉A|2〉B) |2. Here, by changing �
at t = π/2J , the excitation transfer is complete, and the
noble-gas spin becomes decoupled from the alkali spin and
free from its induced relaxation (dotted black line).

B. Exchange of a spin-squeezed state

We now consider the exchange of spin squeezing from
the alkali to the noble gas. The initial state of the system is

|ψ (0)〉 = |ξ〉A |0〉B = e(ξ
∗â2−ξ â†2)/2 |0〉A |0〉B , (36)

where the alkali is in a vacuum squeezed state |ξ〉A. We
use ξ = |ξ |eiθ to denote the squeezing parameter, where

Squeezed 
state

Fock
state

Vacuum 
state

Pe
Im

N
o

(a)

(b)

FIG. 4. Exchange of nonclassical states in the two-mode
approximation. (a) Probability of finding the collective noble-gas
spin with exactly two excitations (Fock state) and the alkali spin
in a vacuum. The two ensembles are perfectly polarized (pA =
pB = 1), and the system is initiated with two excitations in the
collective alkali spin. (b) Exchange of spin variance between the
collective alkali spin quadrature X̂A and the collective noble-gas
spin quadrature P̂B. The alkali spin variance 〈�X̂ 2

A 〉 is initially
squeezed by 7 dB. We present two cases: perfectly polarized
spins (pB = pA = 1, green line), which correspond to an initial
noble-gas spin variance 〈�P̂2

B〉 of 0 dB, and partially polarized
spins (pA = 0.95 and pB = 0.75, red line), which correspond to
an initial noble-gas spin variance of −1.25 dB. In both cases, the
noble-gas spin is efficiently squeezed by the end of the exchange,
interchanging its variance with the alkali spin. In both calcula-
tions, the magnetic field is tuned to resonance �(B) = 0 at t = 0
to enable exchange, and we use J = 55γ for the perfectly polar-
ized case. If the magnetic field is detuned at t = π/2J , the two
ensembles are decoupled and the exchange is complete (dashed
black line).

the magnitude |ξ | determines the degree of squeezing and
the angle θ/2 determines its orientation in phase space
[50]. For example, if ξ is real and ξ > 0, then the X̂A =
(â + â†)/2 quadrature is squeezed and its variance is given
by 〈�X̂ 2

A 〉 = exp(−2ξ)/4, whereas the other quadrature
P̂A = i(â† − â)/2 is antisqueezed, and its variance is given
by 〈�P̂2

A〉 = exp(2ξ)/4. For ξ = 0, this state becomes the
vacuum state with variance 1/4 corresponding to the stan-
dard quantum limit. Note that we adopt the conventions for
X̂ and P̂ from Ref. [50], whose variance is different by a
factor of 2 with respect to the definitions in Ref. [2].

To describe the exchange, we first consider the evolu-
tion of the two ensembles for γ = 0, and then characterize
the effect of relaxation and noise. In Appendix F [see Eq.
(F7)], we derive the evolution of the system as a function
of time and find that, by the end of the exchange, the spin
squeezing is transferred to the collective spin of the noble
gas:

|ψ(Tπ)〉 = e(−ξ
∗b̂2+ξ b̂†2)/2 |0〉A |0〉B = |0〉A |−ξ〉B . (37)
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Therefore, the collective states of the noble-gas and alkali
spins are exchanged but the spin-squeezed state of the
noble gas is rotated in phase space by π/2. For an alkali
spin initially squeezed along the X̂A quadrature with ξ > 0,
it is the conjugate quadrature P̂B of the noble-gas spin that
becomes squeezed with the same degree of squeezing [i.e.,
〈�P̂2

B〉 = exp(−2|ξ |)/4], while X̂B becomes antisqueezed
[i.e., 〈�X̂ 2

B 〉 = exp(2|ξ |)/4]. The alkali ends up in the
vacuum state, with the variances 〈�X̂ 2

A 〉 = 〈�P̂2
A〉 = 1/4.

For finite γ , the transfer process is imperfect due to
relaxation and coupling to nonsymmetric spin modes. For
this case, we derive the evolution of the spin variances
in Eq. (F12) and find that the noble-gas quadrature P̂B is
partially squeezed at the end of the exchange, and that its
variance to first order in γ /J is given by

〈�P̂2
B(Tπ)〉 = e−2ξ

4
+ πγ

8J
(
1 − e−2ξ ). (38)

Importantly, as shown in Fig. 5, for any initial alkali
squeezing with 〈�X̂ 2

A 〉 < 1/4, the noble-gas variance
〈�P̂2

B(Tπ)〉 is squeezed below the standard quantum limit.
For weak-moderate squeezing with |ξ | � log(πγ /2J ),
the exchange is almost complete, and the effect of relax-
ation is negligible. For initially large squeezing, however,
the noise originating from the alkali relaxation degrades
the squeezing degree and limits the spin variance from any
value below vacuum noise to a fraction (πγ /2J ) of the
vacuum noise. Notably, in the strong-coupling regime, this
limit may be small, therefore still allowing the exchange of
a high degree of spin squeezing.

It is also insightful to discuss the consequences of hav-
ing nonperfect polarizations of the two spin gases. The
trivial direct consequence of pA, pB < 1 is the decrease
of J , which scales down with

√
pApB. In addition, the

quantum noise processes for partially polarized ensem-
bles deviate from vacuum statistics and correspond to
thermal processes with about n̄I = (1 − p)/2p incoher-
ent excitations (p = pa|b) [see Eqs. (C8) and (C9)]. For
moderate-high spin polarizations, n̄I � 1, and its effect on
the exchange at short times is small.

Generally, partially polarized and even completely
unpolarized spin ensembles can host nonclassical states
whose spin variance is squeezed [2,18,51,52]. However,
for nonunity spin polarization, there are several different
metrics for spin squeezing of spin ensembles. Here we
consider the metric proposed and analyzed in Ref. [2],
which quantifies the variance of 〈�P̂2

B〉 compared with
1/4. For spin-1/2 noble gases, the collective spin variance
〈�K̂2

y 〉 is typically independent of the spin polarization.
For example, noble-gas spins in the fully mixed state

ρb = �
NB
b=0 (pB |↓〉b〈↓ |b + (1 − pB) |↑〉b〈↑ |b) (39)

FIG. 5. Efficiency of spin-squeezing transfer. The collective
alkali spin is initially squeezed along the X̂A quadrature, and the
squeezing property is transferred to the P̂B quadrature of the col-
lective noble-gas spin. After the transfer time Tπ , the spins can be
decoupled by application of a large magnetic field. The transfer
of squeezing in decibels is almost ideal (linear dependence) for a
low degree of squeezing, and its range is extended as the coupling
between the gases becomes stronger (higher J/γ ). The graph is
generated with Eq. (38) derived for the two-mode approximation.

have a collective spin variance 〈�K̂2
y 〉 = Tr(ρBK̂2

y ) =
NB/4, which is independent of the degree of spin polar-
ization. As 〈�P̂2

B〉 = 〈�K̂2
y 〉/NBpB, the initial noble-gas

spin variance is inversely proportional to the spin polar-
ization, 〈�P̂2

B〉 = 1/4pB, and for pB < 1 is increased with
respect to the vacuum state. For alkali ensembles, the
nonzero nuclear spin in each atom follows an internal spin-
temperature distribution, which leads to a polarization-
dependent variance of the collective spin, 〈�F̂2

x 〉 = NAq/4,
where the slowing-down factor q is given in Eq. (18)
[41]. For unpolarized alkali spins, this variance is asso-
ciated with the thermal spin-state variance [18]. Using
〈�X̂ 2

A 〉 = 〈�K̂2
x 〉/qNApA, we find that 〈�X̂ 2

A 〉 = 1/4pA in
partially polarized alkali ensembles.

In the strong-coupling regime, the collective exchange
process conserves the total number of spin excitations
〈â†â + b̂†b̂〉 and leads to exchange between the variances
〈�P̂2

B〉 and 〈�X̂ 2
A 〉. In Fig. 4(b), we present the trans-

ferred squeezed variance obtained by the noble-gas spin
from an initially squeezed alkali spin, whose XA quadra-
ture is squeezed by 7 dB. We consider two cases: perfectly
polarized ensembles (pA = pB = 1, green line) and imper-
fect polarization of the ensembles with pA = 0.95 and
pB = 0.75 (red line). For the former case, the initial vari-
ance of the alkali is 〈�X̂ 2

A 〉 = 0.05, and the noble gas
is in a vacuum state with initial variance 〈�P̂2

B〉 = 0.25.
For the latter case, initially 〈�X̂ 2

A 〉 = 0.053 (squeezed by
7 dB with respect to its initial polarization 1/4pA) and
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〈�P̂2
B〉 = 1/3. In both cases, the alkali’s squeezed quadra-

ture is transferred efficiently to the noble gas, enabling the
exchange even for moderate spin polarizations. Changing
� at t = π/2J enables us to decouple the spin gases and
maintain the squeezed quadrature at the noble-gas spin.

C. Noble-gas magnetometery

The hybrid system of alkali and noble-gas spins can
be used for various quantum sensing applications. In this
subsection, we demonstrate potential increase of the fun-
damental projection noise sensitivity, attained by initial
transfer of spin squeezing from the alkali to the noble-gas
spins for a simplified magnetometer configuration using
the two-mode approximation. Here we consider a sen-
sor that is sensitive to low-frequency oscillating magnetic
fields transverse to the polarization axis, in the form of
B⊥ cosωt, whose angular frequency ω is resonant with the
precession frequency of the noble gas ωB. This regime is
relevant, for example, in new-physics searches for anoma-
lous magnetic fields [53,54]. For simplicity of the analysis,
we assume that both gases are spin polarized along ẑ (the
alkali spins can be optically pumped continuously) and that
the sensor operates in the detuned regime � � J � γA �
γB.

We characterize the effect of transverse magnetic
fields on the spin dynamics by adding the source terms
iqgApANAB⊥/2 and igBpBNBB⊥/2 to Eqs. (28a) and (28b),
respectively. The numerical factors in these terms and
the dependence on density and polarization (with respect
to the mean-field Bloch equations) result directly from
the definition of the operators â and b̂. In this analysis,
we do not ignore the noble-gas relaxation rate γB and
the associated quantum noise operator F̂B. For simplic-
ity, we consider the limit in which the transverse mag-
netic field B⊥ tilts predominantly the noble-gas spins off
axis and induces their precession, i.e., formally requiring
a sufficiently large noble-gas magnetization gB

√
NBpB �

JgA
√

qNApA/|�|. The alkali spin then responds predom-
inantly to the noble-gas spin precession, which can be
detected by optical means.

In operating the sensor, one estimates the magnitude of
the magnetic field B⊥ using the integrated operator

M̂ (T) = 1
T

∫ T

0
sin(ωt)Re(â(t))dt, (40)

which captures the response of the alkali spins along x to
the time-varying field in its rotating frame. This response
is measured with a lock-in amplifier. Its mean value 〈M̂ 〉 is
associated with the signal that is proportional to the mag-
netic field amplitude, and its variance 〈�M̂ 2〉 is associated
with noise. We solve the two-mode equations of motion
in the time domain in Appendix G and find the tempo-
ral solution for â(t) in Eq. (G3) as well as that for M̂ (T)

in Eq. (G13). The solution for M̂ is composed of a deter-
ministic term, which is governed by the response to the
magnetic field signal, and two noise terms, which limit the
magnetic sensitivity. Both noise terms are associated with
the projection noise of the spin ensembles and, in turn,
limit the fundamental sensitivity of the magnetometer. One
noise term δBinit depends on the initial variance of the spin
ensembles, and the other noise term δBF is governed by the
effective thermalization rate of the long-lived spin mode of
the noble gas: γ̃B = γB + J 2γA/�

2.
In Fig. 6, we plot (in normalized units) the contribution

of the two noise terms to the total sensitivity

δBtot =
√
δB2

init + δB2
F (41)

as derived in Appendix G. At short times T � γ̃−1
B , the

term δBinit is dominant, resulting in a magnetic sensitivity
given by

δBinit = 8
gBT

√√√√ 〈�P̂2
B〉 + J 2

�2 〈�P̂2
A〉

NBpB
. (42)

In the detuned limit we consider J � |�|; this noise is
predominantly governed by the initial spin variance of the
noble gas. Initializing the noble gas with a spin-squeezed
quadrature P̂B therefore decreases its variance 〈�P̂2

B〉 and
results in greater sensitivity than with nonsqueezed noble-
gas spins. The contribution of δBF , which arises due to
infiltration of noise, cannot be further reduced by spin
squeezing (as the noise causes decoherence of this state),
and the net accuracy increase is presented as the shaded
light-blue are in Fig. 6. At longer times T � γ̃−1

B , the uni-
form mode of the noble-gas spin decoheres, rendering its
initial state unimportant with respect to the coupled noise,
which sets the sensitivity to be

δBF = 1
8gB

√
γ̃B

TNBpB
. (43)

Notably, on short time scales, readout noise averages out
with 1/T scaling, whereas, on longer time scales, averag-
ing is slower and scales as 1/

√
T. The threshold between

the two regimes is set by the timescale γ̃−1
B , which can

be prolonged up to the very long γ−1
B by increasing the

relative detuning � and decreasing the contribution of
the alkali spins to the noble-gas relaxation (being the
motivation for detuned operation). The above analysis
might be generalized for other noble-gas sensors such as
comagnetometers and rotation sensors [45,47,49].

VII. NUMERICAL SOLUTION

In this section, we present the numerical solution for
the exchange of Fock and spin-squeezed states using the
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M
a

FIG. 6. Fundamental sensitivity of a hybrid alkali–noble-gas
magnetometer. The magnetometer operates in the detuned limit
� � J and measures a low-frequency oscillating magnetic field
B⊥ cosωt near the resonance frequency of the noble gas. The
magnetometer sensitivity is limited by atom projection noise of
the two gases, which can be decomposed into two qualitatively
different terms, δBinit and δBF . At short times T � γ̃−1

B , the limit
is set by δBinit due to the variance of the initial state. This vari-
ance can be improved by initial squeezing of the noble-gas spins
(shaded light-blue area). At longer times T � γ̃−1

B , the sensitiv-
ity is limited by the decoherence of the noble-gas spins via the
term δBF . The decoherence rate γ̃B = γB + J 2γA/�

2 is the total
decoherence rate of the noble-gas spins when they are coupled to
the alkali spins in the detuned regime. The integration time and
sensitivity are both presented in normalized units.

detailed model, demonstrating the multimode evolution of
Eq. (27). We first present in detail the physical condi-
tions we consider in the calculation and then analyze the
evolution.

A. Physical parameters

The parameters we use for the calculations are estimated
for a mixture of 39K and 3He in a 2-in.-diameter spheri-
cal cell. To maximize the collective coupling rate J , we
consider reasonably high densities of nA = 3 × 1014 cm−3

(vapor pressure at 215 ◦C) and nB = 2 × 1020 cm−3 (7.5
atm) and 30 Torr of N2 for quenching [48]. By standard
optical pumping, the alkali spin polarization can be initial-
ized in a spin-temperature distribution with pA ≥ 0.95, for
which the slowing-down factor q is 4.1 [2,55]. The noble-
gas spin can be initialized via SEOP to a moderate yet
sufficient polarization of pB � 0.75 [56].

A coupling rate of J = 1000 s−1 is reached at this
temperature, as vσ 〈φ〉 = 2 × 10−14 cm3/s (correspond-
ing to 〈φ〉2 ≈ 〈φ2〉 ≈ 2 × 10−10 rad2). The resonance
condition � = (ga − gB)B +�c = 0 is obtained for a
magnetic field B = 94 mG, predominantly compensating
for the large collisional shift vσ 〈φ〉pBnB/2q experienced

by the potassium, and yielding the Larmor frequency
gBB = gAB +�c = 300(2π) Hz. The high alkali density
and polarization and the relatively small Larmor fre-
quency puts the potassium spins in the “spin-exchange
relaxation-free” regime [57–59], rendering their relaxation
via spin-exchange collisions negligible. The relaxation rate
is governed by spin-rotation interaction with 3He and
N2 and by spin-destruction collisions with other potas-
sium atoms, giving γ = 17.5 s−1 [11]. We thus reach the
strong-coupling regime with potentially J > 55γ .

The spin state of 3He in this system can endure for 100 h,
providing that magnetic field gradients, magnetic impuri-
ties in the cell, and alkali-induced dephasing are minimized
[23,34,60]. The alkali spins can be initialized in a non-
classical state via entanglement-generation schemes [1,15]
or by mapping nonclassical light onto the spin orientation
moment [61].

B. Multimode exchange

We numerically solve the multimode differential
equation Eq. (27) to describe the exchange of two exci-
tations (Fock state) and of a spin-squeezed state, with
initial conditions similar to those for the two-mode approx-
imation presented in Fig. 4. These calculations, however,
account for the spatial dynamics with multiple diffusion
modes [40]. The alkali spin is initialized with excitations
of only its spatially symmetric (uniform) mode. As we
assume completely depolarizing walls for the alkali, the
uniform mode of the alkali is not an eigenmode of the dif-
fusion operator. We use the first 200 spherically symmetric
least-decaying modes of each spin ensemble to capture the
coherent multimode dynamics of the spin gases. While
the number of coupled diffusion modes is very large, we
truncate high-order modes whose decoherence (including
diffusion) is much larger than the coupling rate J . For the
relatively large cell, high buffer gas pressure (correspond-
ing to DA = 0.054 cm2/s and DB = 0.023 cm2/s), and the
strong coupled dynamic we consider here, there are tens of
stable modes that coherently participate in the dynamics.
To capture the effect of the truncated modes on the dynam-
ics, we strictly approximate them as reservoir modes that
do not contribute to the coherent process and only increase
the relaxation and quantum noise [see Eq. (E2)]. We have
verified the convergence for this choice of truncation.

We further include the effect of imperfect polariza-
tions pA = 0.95 and pB = 0.75 by using a nonpure density
matrix ρ for the multiple diffusion modes. This matrix is
initialized with incoherent spin excitations of 〈â†

mâm〉 =
0.05 and 〈b̂†

mb̂m〉 = 0.17 at t = 0 for each of the 1 ≤ m ≤
200 modes we compute. We further include the increased
quantum noise due to imperfect polarization as given in
Eqs. (C8) and (C9) and calculate expectation values by
tracing over the contribution of all diffusion modes. The
results of the calculations are presented in Fig. 7. For
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(a)

(b)
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FIG. 7. Exchange of nonclassical states between partially
polarized alkali and noble-gas spin ensembles using the mul-
timode evolution. The exchange is calculated for the proposed
experimental parameters and assuming the initial excitation is
spatially uniform. This solution accounts for the effect of higher
spatial modes and imperfect polarization with pA = 0.95 and
pB = 0.75. At t = 0, the magnetic field is tuned to resonance,
�(B) = 0. Detuning at t = π/2J decouples the two ensem-
bles and completes the transfer (dotted black line, using B =
180 mG). (a) Probability of populating the uniform (longest-
lived) diffusion mode of the noble-gas spin with exactly two
excitations (Fock state) when the system is initialized with two
excitations in the alkali’s uniform mode. In contrast to Fig. 4,
the fidelity presented here poses no conditions on the state of
the alkali spin. (b) Exchange of squeezing with the alkali, which
is initially spin squeezed by 7 dB. For both cases, the multi-
mode evolution results in a faster decay rate over the two-mode
approximation.

the exchange of the Fock state in Fig. 7(a), we present
the fidelity of having exactly two excitations in the uni-
form mode of the noble-gas spin. This metric is different
from that used in Fig. 4 by placing no requirement on the
number of alkali-spin excitations during the exchange. For
both the squeezing and the Fock state exchange, the mul-
timode evolution results in only a finite increase of the
relaxation rate and is qualitatively similar to the two-mode
approximation.

VIII. DISCUSSION

We present analytical and numerical quantum-
mechanical models for the hybrid system of alkali-metal
and noble-gas spins. The models reveal a collective mech-
anism that couples the macroscopic quantum states of the
two spin ensembles. We highlight feasible experimental
parameters for reaching the strong-coupling regime, which
enables a faithful quantum-state transfer between the alkali
and noble-gas ensembles.

It is intriguing that weak collisions, despite their ran-
dom nature, allow an efficient, reversible, and controllable

exchange of excitations. It is particularly counterintuitive
that this exchange preserves the unique quantum statistics
of nonclassical states. Equations (28a) and (28b) manifest
a genuine quantum interface, as they describe the exchange
between the operators â and b̂, which in turn encapsu-
late the full quantum statistics of the collective spin states.
The effect of the randomness of collisions on the quantum
statistics is then incorporated in the noise operator F̂A.

In stochastic quantum systems, the variance of quan-
tum noise satisfies 〈F̂AF̂†

A〉 ≥ 2γ for any relaxation rate γ ,
where equality is obtained for the case of vacuum noise
[42]. For perfect spin polarization, we find that the noise
due to spin-exchange collisions is a vacuum noise, i.e.,
the minimal possible for an open quantum system (see
Appendix C). This result is apparent, for example, in the
exchange of a single spin excitation between perfectly
polarized ensembles, where we obtain 〈F̂AF̂†

A〉 = ε2/t =
2γ .

While it is experimentally possible to approach unity
polarization of the alkali atoms pA → 1 [62,63], the high-
est 3He polarization demonstrated to date is pB = 0.85
[56]. It is therefore insightful to discuss the consequences
of imperfect spin polarization pA, pB < 1. The first and
more trivial consequence is a moderate reduction of J ∝√

pApB, since now only a fraction pApB of the atomic
collisions contribute to the collective exchange process.
The second consequence is added noise due to the ini-
tial incoherent population of transverse spin excitations.
These incoherent excitations are distributed over a macro-
scopic number of spatial modes. Therefore, despite having
a macroscopic number of depolarized atoms, the num-
ber of excitations per mode can be small. Notably, for
a finite polarization degree 0 < p ≤ 1, the mean number
of incoherent excitations in the uniform spatial mode is
given by n̄I = (1 − p)/2p . For p close to unity, n̄I � 1
is small. Finally, the incoherent excitations residing in
all other modes form a “thermal reservoir” of spins that
is manifested as excess quantum noise. In particular, the
collisional coupling of the collective spin to this reser-
voir increases the variance of the quantum noise operators
acting on the spin. This noise is accumulated during the
dynamics and is thus small at short timescales. Impor-
tantly, the overall effects of excess noise for spin ensembles
with polarization of tens-of-percent is relatively small.

The quantum interface we study allows a controllable
state exchange between two spin-gas species, and it is of
particular importance when it comes to noble-gas spins,
which are extremely long-lived but optically inaccessible.
The interface can reach the strong-coupling regime and
allows nonadiabatic exchange, thus significantly increas-
ing operation bandwidth. In conjunction with recent exper-
iments demonstrating the coherent, efficient, and bidirec-
tional properties of the collective coupling in the classical
regime [29,30], our study thus opens a path to couple
light to the transparent spins in the quantum regime. The
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scenario resembles quantum-logic operations with nuclear
ensembles in solids, where a long-lived nuclear spin is
accessible via the hyperfine interaction with an electron
spin, which is optically manipulated and interrogated [64].
Here, however, the collective spins of the two gases form
two coupled quantum oscillators—one that is optically
accessible and another that is long-lived—which can be
used for various quantum information applications with
continuous variables [65,66]. The spin-exchange inter-
face therefore paves the way toward wider applications
of noble-gas spins in quantum optics, including long-lived
quantum memories and long-distance entanglement under
ambient conditions [31–33], as well as to fundamental
research on the limits of quantum theory for entangled
macroscopic objects.
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APPENDIX A: STOCHASTIC EVOLUTION OF A
SINGLE EXCITATION

For a system initialized with a symmetric excitation
|ψ0〉 = |1〉A|0〉B, for short timescales and to first order in
φ, the evolution by Eq. (6) is given by

|ψ(t/τ)〉

=
[
1 − i

t/τ∑

n

∑

ab

κ
(n)
ab φ

(n)
a

(
1
2

ŝ−
a k̂+

b + ŝazk̂bz

)]
|ψ0〉,

using ŝ+
a k̂−

b |ψ0〉 = 0 (since no excitations populate the
initial state of the noble gas). The second term is then
decomposed into the deterministic and stochastic terms,
−iJt|1〉A|0〉B and −iε|δψ〉, as outlined in the main text.
Here we identify the stochastic transition amplitude

ε =
[∑

b

(∑

a

t/τ∑

n=0

δφ
(n)
ab

)
2/2NA

]
1/2 (A1)

and the stochastic wave function

|δψ〉 ≡ |0〉A|δψ〉B + |δψ〉A|0〉B, (A2)

where

ε|δψ〉B = 1
2
√

NA

∑

b

[∑

an

δφ
(n)
ab

]
k̂+

b |0〉B (A3)

describes stochastic nonsymmetric noble-gas spin excita-
tions, while

ε|δψ〉A = 1
2
√

NA

∑

a

[∑

bn

δφ
(n)
ab

]
ŝ+

a |0〉A (A4)

describes nonsymmetric excitations of alkali spins. These
wave functions depend on the fluctuation of the spin pre-
cession δφ

(n)
ab = κ

(n)
ab φ

(n)
a − 〈φ〉/NB, where 〈φ〉 ≡ 〈φ(n)a 〉.

Following the central-limit theorem and assuming the
stringent condition that any two collisions are uncorrelated
〈δφ(n′)

a′b δφ
(n)
ab 〉 = δaa′δbb′δnn′ 〈(δφ(n)ab )

2〉, we find the result in
the main text ε →

√
〈φ2〉t/2τ , where 〈φ2〉 ≡ 〈[φ(n)a ]2〉.

APPENDIX B: COLLISION STATISTICS

Here we present details of the collision statistics of alkali
and noble-gas atoms used in the derivation of the expres-
sions in Eq. (21) from expressions in Eq. (17), as well as
for characterization of the spin-exchange noise in Eq. (C1).

The microscopic parameter κab (t, τ) indicates if the pair
a-b has collided during the time interval [t, t + τ ] by

κab (t, τ) =
∫ t+τ

t
δ(s − t(i)ab)ds. (B1)

For short τ , we can assume a ballistic motion of the
particles, such that the two-body displacement satisfies

rab (t + s) = rab (t)− vab(t)s (B2)

for any s ∈ [t, t + τ ]. A collision of the pair occurs at t(i)ab if
rab(t

(i)
ab) ≤ ε, where ε characterizes the hard-sphere radius

of the pair, satisfying σ = πε2 and rab = |rab|. The time of
a collision is then determined by

|rab (t)− vab(t
(i)
ab − t)| ≤ ε.

Solving for t(i)ab, we obtain the expression

t(i)ab = t + rab (t)
vab

(
cos θvab ±

√
ε2/r2

ab (t)− sin2 θvab

)
,

(B3)

where θvab ∈ [0,π ] is the relative angle between rab and
vab. Therefore, tab exists only if sin2 θvab ≤ ε2/r2

ab (t). Since
ε is about a few angstroms, collisions occur only at
small angles θvab � 1. Ignoring the collision duration τc �
2ε/vab � τ , we can approximate the collision time as the
average of the two solutions, yielding t(i)ab = t + rab (t) /vab,
if θvab ≤ ε/rab (t). We can then write the expression for
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κab(t, τ) as

κab (t, τ) = �(θvab ≤ ε/rab (t) )
∫ τ

0
δ(s − rab (t) /vab)ds,

(B4)

which determines if a pair has collided given the relative
location and velocities.

To derive the statistical properties of κab, we first
average over the pair velocities. We assume a Maxwell-
Boltzmann distribution for the velocity v:

f (v)d3v = π− 3
2
v2

v3
T

e−v2/v2
T dv sin θvdθvdϕv, (B5)

where vT stands for the thermal relative velocity of the pair.
The velocity-average collision probability is then given by

〈κab (t, τ)〉v ≡
∫

κab (t, τ) f (v)d3v

= ε2

r2
ab (t)

1√
π

∫ ∞

rab/τvT

duu2e−u2
, (B6)

where we changed the integration variable to u =
rab (t) /svT. The last integral can be approximated with
using the Heaviside function,

1√
π

∫ ∞

rab/τvT

duu2e−u2 ≈ 1
4
�(τvT − rab (t) ), (B7)

yielding

〈κab (t, τ)〉v ≈ σ

4πr2
ab (t)

�(τvT − rab (t) ), (B8)

such that two particles collide, on average, depending on
their relative solid angle σ/4πr2

ab (t), provided that their
spatial separation is small, rab < τvT. Our model relies on
the motion of the particles being ballistic, which is valid
for short intervals vTτ � 1/nBσ .

We are interested in the spatially coarse-grained dynam-
ics on the length scale l � 1/nBσ . Using the radial window
function w(r), we obtain

〈κab (t, τ)〉v ∗ w(r) = 3
4π l3

∫ 2π

0
dφ′

∫ π

0
sin θ ′dθ ′

∫ ∞

0
r′2dr′ σ

4πr′2�(τvT − r′)�(
∣∣rab − r′∣∣ − l)

≈ 3
4π l3

στvT

∫ 2π

0
dφ′

∫ π

0
sin θ ′dθ ′

∫ ∞

0
r′2dr′ δ(r

′)
4πr′2�(

∣∣rab − r′∣∣ − l) = 3
4π l3

στvT�(rab − l)

= στvTw(rab), (B9)

where in the second line we used vTτ ≪ l. This expres-
sion can be used to estimate standard kinematic rela-
tions, such as the mean collision times. The probability
that two spins a and b will collide in time interval τ is
given by pab(t, τ) = 〈κab (t, τ)〉v ∗ w(r). This probability
is given by

pa(t, τ) =
∑

b

pab(t, τ) = τnBσv, (B10)

using the relation nB = ∑
b w(r − rb). Since τ

(B)
d ≡

1/nBσv is the mean time between collisions for a given
alkali-metal atom with any noble-gas atom, the probabil-
ity is simply pa = τ/τ

(B)
d , independent of t. This result

corresponds to the Markovian exponential distribution
pa(t, τ) = 1 − exp(−τ/τ (B)d ) for τ � τ

(B)
d . A similar result

is obtained for pb(t, τ) by interchanging the indices a and b.

We calculate the second moment of κab assuming that
different collisions are statistically independent,

〈
κab(t, τ)κcd(t′, τ)

〉
v

= δacδbdτδ
(
t − t′

) 〈
κab(t, τ)

〉
v
,

(B11)

where we assumed that the times t and t′ are sampled with
intervals dt, dt′ � τ to include multiple collisions.

Spin-exchange interactions, experienced during binary
collisions as considered so far, lead to phase accumulation
of the colliding spins. The spin dynamics are determined
by the statistics of the collisions and are governed by

κab (t, τ) φab (t) =
∫ t+τ

t
φ
(i)
abδ(s − t(i)ab)ds. (B12)

Since κab (t, τ) is a Bernoulli process, whose possible
values are only 0 or 1,we get

〈κab (t, τ) φab (t)〉 = 〈κab (t, τ)〉 〈φab (t) |κab (t, τ) = 1〉 .
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Moreover, κab (t, τ) is defined such that when the spins a
and b do not approach each other more closely than the
collision distance ε, then φab (t) = 0, and φab (t) �= 0 only
when κab (t, τ) = 1. Therefore, 〈φab (t) |κab (t, τ) = 1〉 =
〈φab (t)〉 = 〈φ〉, where 〈φ〉 is averaged over all impact
velocities and impact parameters. The value of 〈φ〉 and
the dependence of φab (t) on the collision trajectory (veloc-
ity and impact parameter) were discussed in [37]. The
averaged coupling strength is given by

〈κab (t, τ) φab (t)〉 = 〈φ〉σvTτw(rab). (B13)

Similarly, the averaged dissipation rate is given by

〈
κab (t, τ) φ2

ab (t)
〉 = 〈φ2〉σvTτw(rab), (B14)

and the fluctuation in second order is given by

〈
κab (t, τ) φab (t)κcd

(
t′, τ

)
φcd

(
t′
)〉

= δacδbdσvTw(rab)〈φ2〉τ 2δ
(
t − t′

)
. (B15)

Equations (B9) and (B13) are used to derive the proper-
ties of ζ in Eq. (21) as well as the identity in Eq. (C2).
Equations (B11), (B14), and (B15) are used in deriving
the properties of the incoherent exchange terms in Eq.
(21) and in the derivation of the variance identities of the
spin-exchange noise in Appendix C.

APPENDIX C: NOISE ASSOCIATED WITH
SPIN-EXCHANGE COLLISIONS

The fluctuation vector operator F̂ex in Eq. (21) can be
defined by (see Ref. [67])

F̂ex(r, t)dt = −ζ k̂(r, t)× f̂(r, t)dt (C1)

+ 1
τ ′

∫ t+dt

t
ds

∑

ab

κab(s, τ ′)φa(s)

× w(rb − ra)k̂bŝa,

accounting for the stochastic fine-grained dynamics [of Eq.
(17)] within the coarse-grained description [of Eq. (21)].
Similarly to what we observe in the simulation in Sec. III
and Fig. 2, the operator F̂ex describes fluctuations of order
〈φ2〉 in the coherent mutual-precession process, manifest-
ing a stochastic superposition of nonsymmetric local spin
operators. Fluctuations in the incoherent terms are of order
〈φ4〉 and are thus negligible.

We now examine the statistical properties of the fluctu-
ation operator F̂ex. It is zero on average

〈
F̂ex(r, t)

〉 = 0, (C2)

and its correlations satisfy

〈
F̂ex,i(r, t)F̂ex,j (r′, t′)

〉 = 1
2

nAnBkSEδ
(
t − t′

)
w(r − r′)L̂ij ,

(C3)

where

L̂ij = δij1 − 2{k̂i, ŝj }/(nAnB)+ iεijm
(
k̂m/nB + ŝm/nA

)
.

(C4)

Here the symbol εijm is the Levi-Civita tensor and
i, j , m ∈ {x, y, z}. We interpret F̂ex as temporally and
spatially white, since its correlations are proportional
to δ

(
t − t′

)
and to the coarse-grained δ function

w(r − r′). Furthermore, the coarse-grained commuta-
tion relations

[
ŝi(r, t), ŝj (r′, t)

] = iw(r − r′)εijmŝm(r, t) and
[
k̂i(r, t), k̂j (r′, t)

] = iw(r − r′)εijmk̂m(r, t) are preserved.
Indeed, the relaxation of the commutation relations after
dt due to the loss terms in Eq. (21) is exactly balanced
by the fluctuations F̂ex,i(r, t)F̂ex,j (r′, t)dt2. We therefore
formally identify F̂ex as a quantum white noise operator
[42] originating from the randomness of the collisional
interaction.

For fully polarized spin ensembles, the corresponding
noise correlations are found to have the standard form of
vacuum noise [42], satisfying

〈
F̂−

ex(r, t)F̂+
ex(r

′, t′)
〉 = 2nAnBkSEδ

(
t − t′

)
w(r − r′),

〈
F̂+

ex(r, t)F̂−
ex(r

′, t′)
〉 = 0.

(C5)

The contribution of F̂ex to the alkali noise operator F̂A in
Eqs. (25) and (28) is given by F̂A = F̂−

ex/
√

2|fz|. Therefore,
the variance is

〈
F̂A(r, t)F̂†

A(r
′, t′)

〉 = 2γexδ
(
t − t′

)
w(r −

r′), where γex = nBkSE/q is the spin-exchange relaxation
for the alkali spins. We thus conclude that, for polarized
ensembles, the spin-exchange noise appears as vacuum
noise, which is the minimal possible noise.

It is also interesting to consider the case of imperfect
spin polarization. For general spin polarizations pA, pB ≤
1, the second-order moments of the noise are given by

〈
F̂A(r, t)F̂†

A(r
′, t′)

〉 = 2 + pA + pB

4pA
2γexδ

(
t − t′

)
w(r − r′),

〈
F̂†

A(r, t)F̂A(r′, t′)
〉 = 2 − pA − pB

4pA
2γexδ

(
t − t′

)
w(r − r′).

Importantly, for highly polarized ensembles (1 − pA �
1, 1 − pB � 1), the excess noise is small, since
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(2 − pA − pB/4pA) � 1 and (2 + pA + pB/4pA)− 1 � 1.
It is interesting to note that imperfect polarization con-
tributes to other quantum noise terms as well, and this
contribution is quantitatively similar to that in F̂ex and F̂A.
We therefore conclude that the interface based on spin-
exchange collisions is not much more sensitive to imper-
fect polarization compared with other quantum effects in
single-species spin systems.

In practice, the relaxation due to spin exchange, includ-
ing the effect of F̂ex, is small compared with that orig-
inating from other sources. For example, the relaxation
rate of the alkali electron spin due to spin exchange is
nBkSE, whereas the relaxation rate due the spin-rotation
coupling during collisions is nBσSRv, where σSR is the
spin-rotation cross section. The relative importance of
these two mechanisms is characterized by the parame-
ter η = kSE/σSRv, where η = 0.34 for potassium-helium,
η = 0.024 for rubidium-helium, and η < 0.01 for cesium-
helium at 215 ◦C [11]. The relaxation of the noble-gas
spins due to spin exchange with alkali spins is neg-
ligible for t � (nAkSE)

−1 ≈ 17 h when one is operat-
ing with nA = 3 × 1014 cm−3. When perfectly polarized
ensembles are initialized, quantum noises other than spin
exchange also behave as vacuum noises. In this case, the
noise terms F̂A = (F̂A,x + iF̂A,y)/

√
2|fz| and F̂B = (F̂B,x +

iF̂B,y)/
√

2|kz| satisfy

〈F̂χ 〉 = 〈F̂†
χ F̂χ 〉 = 0 (C6)

and

[F̂χ (r, t), F̂†
χ (r

′, t′)] = 〈F̂χ(r, t)F̂†
χ (r

′, t′)〉
= [2γχw(r − r′)+ Cχ (r, r′)]δ

(
t − t′

)
, (C7)

for χ ∈ {A, B}, including the fluctuations induced by the
spin-exchange interaction. The function Cχ(r, r′) is the
diffusion component of the noise correlation function [40],
independent of the spin-exchange interaction or of the
other relaxation mechanisms incorporated in γχ .

Partially polarized ensembles exhibit increased quan-
tum noise. An ensemble with polarization pχ = 1 − δpχ
for δpχ � 1, is populated with incoherent (thermal) exci-
tations of each spin mode by 〈n̂I 〉 = (1 − p)/2p ≈ δp/2.
Thus, the noise variance exceeds that of vacuum noise and
is given by

〈F̂†
χ(r, t)F̂χ (r′, t′)〉 = δpχ/2[2γχw(r − r′)

+ Cχ (r, r′)]δ
(
t − t′

)
(C8)

and

〈F̂χ(r, t)F̂†
χ (r

′, t′)〉 = (1 + δpχ/2)[2γχw(r − r′)

+ Cχ (r, r′)]δ
(
t − t′

)
. (C9)

APPENDIX D: COMPARISON WITH
MEAN-FIELD MODEL.

We compare Eq. (21) with the existing mean-field theory
and associate our model parameters with those obtained
from experiments. The mean-field spin operators are
related to our formalism by 〈f̂〉 ≡ ∫

d3r〈ψ |f̂(r, t)|ψ〉/NA

and 〈k̂〉 ≡ ∫
d3r〈ψ |k̂(r, t)|ψ〉/NB, where |ψ〉 is the initial

many-body wave function of the system. Substituting these
definitions in Eq. (21) and using 〈F̂ex〉 = 0, we recover the
standard Bloch equations [Eq. (1)].

In terms of experimentally measured parameters, the
interaction strength ζ is given by ζ = 8πκ0gegnμBμn/3q�,
where ge = 2 is the electron g factor, gn is the g fac-
tor of the noble-gas nucleus, μB is the Bohr magneton,
μn is the magnetic moment of the noble-gas spin, and
κ0 is the enhancement factor over the classical magnetic
field due to the attraction of the alkali-metal electron
with the noble-gas nucleus during a collision [11,38]. For
K-3He at T = 220 ◦C, ζ = 4.9 × 10−15 cm3/s, and kSE =
5.5 × 10−20 cm3/s [11,38]. Roughly estimating a colli-
sional spin-exchange cross section σ of approximately
8 × 10−15 cm2 from the K-3He interatomic potential [68]
and using a typical centrifugal potential with an angu-
lar momentum of 40� yields an estimate of the preces-
sion angles 〈φ〉 ≈ ζq/σv = 1.4 × 10−5 rad and 〈φ2〉 ≈
4kSE/σv = 1.6 × 10−10 rad2 for highly polarized alkali
vapor.

APPENDIX E: COUPLED SPATIAL MODES

The expressions in Eq. (27) describe the coupling of any
spatial mode of one spin species with the Nmodes ≈ V/Vl
modes of the other species. In practice, however, most
modes are barely coupled. It is constructive to differentiate
between the set of high-order modes of the diffusion opera-
tor, defined by R ≡ {

âr, b̂r|γAr, γBr � J
}

(0 ≤ r < Nmodes)
and the complementary set of stable modes, S = 1 \ R.
The high-order modes, R, are characterized by rapid relax-
ation due to the thermal motion of the atoms. These
modes experience little coherent interaction and, at long
timescales dt � 1/γAr, 1/γBr, are governed by

âr(t) = ŵAr(t)− iJ
γAr−i�

∑
n∈S crnb̂n(t),

b̂r(t) = ŵBr(t)− iJ
γBr+i�

∑
m∈S c∗

mrâm(t).
(E1)

The first terms, ŵχr(t) = ∫ t
0 dτ ′e−(iωχ+γχr)τ ′

F̂χr(t − τ ′) for
χ ∈ {A, B}, describe the diffusion-induced quantum pro-
cess. Here we used the noise terms of the rth modes,
which are given by F̂Ar = ∫

Ar (r) F̂A (r) d3r and F̂Br =∫
Br (r) F̂B (r) d3r. This process dominates the dynamics,

which is Markovian: any dependence on âr(t0) and b̂r(t0) at
t0 � t is erased exponentially at the fast rates γAr and γBr.
Consequently, the modes âr(t) and b̂r(t) can be considered
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as thermal reservoirs. The second term in the expressions
in Eq. (E1) describes the weak coupling to the stable modes
âs, b̂s ∈ S via the coherent collisional interaction. Substi-
tution of the expressions in Eq. (E1) in the expressions in
Eq. (27) yields a relatively small and close set of coupled
equations for the stable modes, governed by a coherent
dynamics:

∂tâs = −(iωA + γAs)âs − J
∑

n∈S
(icsnb̂n + ε(A)sn ân)+ ĜAs,

∂tb̂s = −(iωB + γBs)b̂s − J
∑

m∈S

(
ic∗

msâm + ε(B)∗sm b̂m
) + ĜBs,

(E2)

The coefficients ε(A)sn = ∑
r∈R csrc∗

nrJ/(γBr + i�) and ε(B)sn =∑
r∈R crsc∗

rnJ/(γar − i�) describe couplings between dif-
ferent stable modes, and ĜAs = F̂As − iJ

∑
r∈R csrŵBr and

ĜBs = F̂Bs − iJ
∑

r∈R crsŵAr denote the increased quan-
tum noise induced due to coupling with the high-order
(reservoir) modes, R.

The effect of ĜAs and ĜBs on the spin dynamics
depends on the number of modes considered in S . For
the case of an uncoated spherical cell with radius R,
we can bound the contribution of the high-order modes
by |ε(A|B)

sn | < J/π2γ(B|A)r0 . Here γ(B|A)r0 = D(B|A)π2r2
0/R

2

is the diffusion-induced relaxation of the least-decaying
mode in the set R, with radial mode number r0. This
bound is attained by the asymptotic form of the diffusion-
relaxation modes, validated by numerical calculations.
Thus, if enough modes are considered in Eq. (E2), the
contributions of ε(A), ε(B), ĜA − F̂A, and ĜB − F̂B to the
dynamics can be rendered negligible. In general, this for-
malism can also be applied with a smaller number of stable
modes such that γAm, γBn ∼ J , at the expense of overes-
timating the diffusion-induced relaxation. Moreover, one
may calculate ε(A) and ε(B) for a given number of lead-
ing reservoir modes and use the asymptotic approximation
for the infinite number of additional reservoir modes;
namely, ε(A)sn = ∑r1

r=r0
csrc∗

nrJ/(γBr + i�)+ J/π2γBr1 and
ε(B)sn = ∑rh−1

r=rl
Jcrsc∗

rn/(γAr − i�)+ J/π2γArh .

APPENDIX F: TWO-MODE SOLUTION

Here we consider the analytical solution of Eqs. (28a)
and (28b). These equations describe a simplified model
with only a single mode per spin species (the stable mode
s = 0, with c00 = 1). For � = 0, the dynamics are given
by

â(t) = e− γ t
2

[(
cos J̃ t − γ

2J̃
sin J̃ t

)
â − iJ

J̃
sin(J̃ t)b̂

]
+ ŵA,

b̂(t) = e− γ t
2

[(
cos J̃ t + γ

2J̃
sin J̃ t

)
b̂ − iJ

J̃
sin(J̃ t)â

]
+ ŵB,

where the effective exchange rate is given by

J̃ =
√

J 2 − γ 2/4 (F1)

and the quantum noise processes are

ŵA(t) =
∫ t

0
dse−γ s/2

(
cos J̃ s − γ

2J̃
sin J̃ s

)
F̂A(t − s),

ŵB(t) = −i
∫ t

0
dse−γ s/2 J

J̃
sin(Js)F̂A(t − s).

(F2)

In the strong-coupling regime J � γ , the full solution in
the rotating frame further simplifies to

â(t) = e−γ t/2[cos(Jt)â − i sin(Jt)b̂] + ŵA,

b̂(t) = e−γ t/2[cos(Jt)b̂ − i sin(Jt)â] + ŵB.
(F3)

Here the alkali-metal relaxation is shared by both spin
gases, accompanied by a transfer of quantum fluctuations
to the noble-gas spin. The noise processes simplify to

ŵA(t) =
∫ t

0
dse−γ s/2 cos(Js)F̂A(t − s),

ŵB(t) = −i
∫ t

0
dse−γ s/2 sin(Js)F̂A(t − s).

(F4)

For t � 2/γ , these processes can be considered as white
Wiener operators, while for shorter times, they are col-
ored by the transfer functions. It is fruitful to derive the
explicit noise statistics of ŵB in the strong-coupling regime
with respect to the vacuum state. The noise process has
zero average 〈ŵB(t)〉 = 0, and the other moments satisfy
〈ŵB(t)ŵB(t′)〉 = 〈ŵ†

B(t)ŵB(t′)〉 = 0. However, this process
has a nonzero correlation

〈ŵB(t)ŵ
†
B(t

′)〉 = 2γ e− γ |t′−t|
2

∫ t

0
dse−γ s sin(Js) sin(Js′)

using 〈F̂A(t)F̂
†
A(t

′)〉 = 2γ δ(t − t′) and denoting s′ = s +
|t′ − t|. It is also interesting to look at t = t′, which, up to
first order in γ /J , is given by

〈ŵB(t)ŵ
†
B(t)〉 = 1 − e−γ t

(
1 + γ

2J
sin 2Jt

)
, (F5)

thus vanishing at t = 0 and approaching unity for t � γ−1.
At the exchange time Tπ , it is given by

〈ŵB(Tπ)ŵ
†
B(Tπ)〉 = γπ

2J
(F6)

to first order in γ /J .
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We now consider the exchange of spin-squeezed states.
Substituting the expressions in Eq. (F3) in Eq. (36), we find
that the evolution for γ = 0 is given by

|ψ(t)〉 = exp
{

1
2

[
cos2(Jt)

(
ξ ∗a2 − ξa†2)

− sin2(Jt)
(
ξ ∗b2 − ξb†2)

− i sin(2Jt)
(
ξ ∗ab + ξa†b†)2

]}
|0〉A |0〉B . (F7)

We find that the noble gas is squeezed at Tπ and that,
at intermediate times, the spins of the two gases become
entangled.

In the presence of relaxation and noise, the system does
not remain in a pure spin-squeezed state after the exchange
due to excitations of nonsymmetric spin modes. Yet, as we
now show, it retains a spin variance below the standard
quantum limit in the P̂B quadrature. The evolution of X̂B(t)
and that of P̂B(t) are given by

X̂B(t) = e− γ t
2

[
cos(Jt)X̂B + sin(Jt)P̂A

]
+ ŵXB(t),

P̂B(t) = e− γ t
2

[
cos(Jt)P̂B − sin(Jt)X̂A

]
+ ŵPB(t),

(F8)

where ŵXB = (ŵB + ŵ†
B)/2 and ŵPB = i(ŵ†

B − ŵB)/2 are
Hermitian noise processes, whose vacuum statistics satisfy

〈ŵ2
XB

〉 = 〈ŵ2
PB

〉 = 〈ŵB(t)ŵ
†
B(t)〉/4. (F9)

To compute the variance of spin-squeezed states, it is
fruitful to define the spin-squeezing operator

Ŝ(â, ξ) = exp
[

1
2

(
ξ ∗â2 − ξ â†2)

]
, (F10)

for which |ξ〉A = Ŝ(â, ξ)|0〉A, and which for ξ = |ξ |eiθ

satisfies

Ŝ†(â, ξ)âŜ(â, ξ) = cosh(|ξ |)â − eiθ sinh(|ξ |)â†. (F11)

Using Eqs. (F8) and (F11), we find that the exchanged
variances are given by

�X̂ 2
B (t) = e−γ t

[
cos2(Jt)〈X̂ 2

B 〉 + sin2(Jt)〈P̂2
A〉] + 〈ŵ2

XB
(t)〉,

�P̂2
B(t) = e−γ t

[
cos2(Jt)〈P̂2

B〉 + sin2(Jt)〈X̂ 2
A 〉] + 〈ŵ2

PB
(t)〉,

(F12)

where the expectation values are taken for |ψ(0)〉. Using
t = Tπ , we then obtain Eq. (38).

APPENDIX G: MAGNETOMETER RESPONSE

To describe the response of the hybrid alkali–noble-gas
magnetometer, we extend the simplified two-mode model
in Eq. (28) to include a time-varying transverse magnetic
field and a nonzero noble-gas relaxation:

(
∂tâ
∂tb̂

)
=

(
iωA − γA −iJ

−iJ iωB − γB

) (
â
b̂

)
+

(
ĥA

ĥB

)
,

(G1)

where the inhomogeneous source terms are

ĥA = F̂A + iB⊥gA
√

qNApA/2,
ĥB = F̂B + iB⊥gB

√
NBpB/2.

(G2)

The time evolution of â(t) is obtained by integration of Eq.
(G1), which yields

â(t) = �A
(t,0)â +�B

(t,0)b̂

+
∫ t

0

(
�A
(t,τ)ĥA(τ )+�B

(t,τ)ĥB(τ )
)

dτ . (G3)

Here�A
(t,τ) and�A

(t,τ) are the transfer functions of the oper-
ator â(t) to excitations of â(τ ) and b̂(τ ) at an earlier time
τ , respectively, which are given by exponentiation of the
homogeneous part of Eq. (G1):

�A
(t,τ) = 1

2iJ̃

(
�+e�+(t−τ) +�−e�−(t−τ)) (G4)

and

�B
(t,τ) = J

2J̃

(
e�−(t−τ) − e�+(t−τ)). (G5)

The coupling rate

J̃ =
√

J 2 + 1
4 (�+ iγA − iγB)2 (G6)

generalizates Eq. (F1) for nonzero detuning and noble-gas
relaxation, and the dressed-state rates and amplitudes are
given by

�± = ±iJ̃ − 1
2 (γA + γB − iωA − iωB), (G7)

�± = iJ̃ ± 1
2 (i�+ γB − γA). (G8)

In the detuned limit considered in this analysis, the rates
�± conveniently simplify to decoupled alkali and noble-
gas dynamics

�+ = i
(
ωA + J 2

�

)
− γA

(
1 − J 2

�2

)
, (G9)
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�− = i
(
ωB − J 2

�

)
−

(
γB + J 2

�2 γA

)
≡ iω̃B − γ̃B (G10)

to leading orders in J/�. Here ω̃B denotes the dressed pre-
cession frequency of the noble gas, and γ̃B denotes the
dressed relaxation rate. Similarly, the dressed amplitudes
�± are given by

�+ = i�+ γB − γA, (G11)

�− = i
J 2

�
+ J 2

�2 γA. (G12)

We now turn to compute the terms composing M (T) in Eq.
(40). We consider a transverse magnetic field B⊥ = Bx −
iBy oscillating in resonance with the noble-gas precession
ω = ω̃B and apply the rotating-wave approximation under
the assumptions that ωA � γA and ωB � γ̃B. We find that
the magnetometer signal is composed of three terms:

M̂ = 〈M̂ 〉 + δM̂init + δM̂F . (G13)

The first term describes the lock-in response to the mag-
netic signal, which is given by

|〈M̂ 〉| = JgB
√

NBpBRe B⊥
8�γ̃ 2

B T
(1 + �)

(
γ̃BT + e−γ̃BT − 1

)
,

(G14)

where

� = gAJ
gB�

√
qNApA

NBpB
(G15)

denotes the relative response of the alkali spins to the driv-
ing field with respect that of the noble gas, and for simplic-
ity we can assume that the noble-gas density is sufficiently
high such that � � 1. The second and third terms in Eq.
(G13) denote the noise processes associated with atom
projection noise, which fundamentally limit the sensitiv-
ity of the sensor. Both terms vanish on average (〈δM̂init〉 =
〈δM̂F〉 = 0) but have nonzero standard deviations. The first
is given by

√
〈δM̂ 2

init〉 = J
(
1 − e−γ̃BT

)

2�γ̃BT

√
〈P2

B〉 + J 2

�2 〈P2
A〉, (G16)

which depends predominantly on the noble-gas initial spin
variance and is significant for T � γ̃−1

B . The second,

√
〈δM̂ 2

F〉 = J
√

2γ̃BT − 3 + 4e−γ̃BT − e−2γ̃BT

4�γ̃BT
, (G17)

is associated with relaxation and coupling of noise at rate
γ̃B, which becomes significant at later times. The magnetic

sensitivities are therefore limited by

δBinit = B⊥

√
〈δM̂ 2

init〉
|〈M̂ 〉| and δBF = B⊥

√
〈δM̂ 2

F〉
|〈M̂ 〉| .
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