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Topological insulators exhibit fascinating properties such as the appearance of edge states pro-
tected by symmetries. The Su-Schrieffer-Heeger (SSH) model is a canonical description of a one-
dimensional quantum topological insulator. We experimentally implement a modified SSH model
with long-range interacting spin systems in one-dimensional trapped ion crystals of up to 22 spins.
An array of tightly focused laser beams generates site-specific Floquet fields that control the
bond dimerization of the spins, which when subject to reflection symmetry, exhibit signatures of
topologically-protected edge states. We study the evolution of highly excited configurations with
various ranges of the spin-spin interaction, revealing the nontrivial role of many-body fermionic-
interaction terms on the resulting dynamics. These results allow direct quantum simulations of
topological quantum degrees of freedom expected in exotic materials, but here with high control of
individual spins and their interaction range.

Topological quantum materials have triggered exten-
sive interest in physics and materials science [1] and have
potential applications as robust information carriers in
quantum information science [2]. Topological insula-
tors serve as prime examples of such materials and give
rise to macroscopic properties that qualitatively differ
between the material’s bulk and its edges, impacting
phenomena such as quantum coherence of excitations
and transport [3, 4]. Perhaps the simplest instance of a
topological insulators is the Su-Schrieffer-Heeger (SSH)
model in one dimension [5–7], describing a crystal of
fermions with alternating bond strengths under a chiral
symmetry which supports long-lived edge states.

The characterization of topological insulators is well
established in electronic systems at the single-particle
level. Quantum simulators based on photonic or atomic
systems allow the probing of novel effects arising from
the interplay between topology and dissipation and in-
teractions. Topological insulator phases have been im-
plemented with ultracold atoms [8, 9], photonic lattices
[10–12] and Rydberg atoms [13]. Here, we implement a
modified SSH model of a topological insulator in a spin-
system composed of an array of trapped atomic ions,
allowing the control of the range of interactions and the
direct preparation and measurement of ground and ex-
cited states at the single spin level.

Trapped ion crystals are pure quantum materials that
facilitate the bottom-up construction of crystals in one
or higher dimensions through strong electromagnetic
confinement and laser-cooling of individual atoms [14–
16]. Laser-driven optical dipole forces couple the inter-
nal spin levels of different atoms with their collective

modes of motion, enabling the control of spin-spin in-
teractions that can be long- or short-ranged, uniform
or staggered in sign [17, 18]. A simple global optical
dipole force allows the quantum simulation of a diverse
array of quantum phases of matter, including ferromag-
netic, antiferromagnetic, disordered ‘XY’, and continu-
ous symmetry breaking phases [17, 19, 20].

Floquet engineering with optical fields, or the periodic
optical driving of a material, enables further control of
microscopic interaction terms and the shaping of band
structures in various materials [21–25]. Indeed, Floquet
Topological Insulators are materials that acquire their
topological properties solely through the illumination
of light. However, its practical application in solid-state
systems presents experimental challenges, owing to the
small length scale of the crystal and the required inten-
sity. Floquet fields have been employed in trapped-ion
and other atomic systems to create time crystals [26, 27]
or investigate dynamical gauge fields [28]. However, the
global nature of the applied fields in these cases has
limited the complexity of the resulting model.

Here, we use a fully universal quantum computer sys-
tem, with individual optical control of each spin for
a site-dependent Floquet drive, to implement the SSH
model [29]. We experimentally explore the topological
properties of trapped-ion crystals that emerge in the
presence of Floquet fields with arbitrary initial spin con-
figurations. Using an array of optical fields that simul-
taneously address each individual atom in the crystal,
we gain precise control over the amplitude and phases of
the Floquet fields across the crystal, introducing reflec-
tion symmetry to the interaction bonds. We observe the
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Figure 1. Floquet Engineering of Spin Bonds and Topological Edge-States. a-c, Bond dimerization in an L = 12
spin crystal. Measured spin-spin bond strength ℏ|Jij | between ith and jth spins up to next-nearest neighbors (NNN) with
increasing Floquet amplitude η̄. a, No modulation (η̄ = 0). b, Moderate modulation (η̄ = 0.6). c, Full modulation (η̄ = 1).
Black spheres for spins and lines for bonds strength, pink rectangles for local Floquet fields. d-f Evolution of a Single spin
excitation at the edge over time for configurations a-c respectively. The Floquet field suppresses thermalization into the
bulk, leading to edge localization. ℏJ : average nearest-neighbor spin bond energy absent the Floquet drive; yellow lines show
excitation spreading rate (See Method). g, spin excitation at the crystal edge ⟨ŝ(1)

z ⟩ with varying Floquet field amplitude.
h, Excitation spreading rate (black bars) slowing with increasing Floquet field amplitude, in agreement with model (green).
Data in d-h aligns with the numerical spin model in Extended Data Fig. 1.

emergence of protected excitations at the edges of one-
dimensional crystals containing up to 22 spins, in con-
trast to the observed thermalization of the bulk. Addi-
tionally, we investigate the dynamics and thermalization
rate of states comprising single and multiple spin exci-
tations. By controlling the range of interaction while re-
specting the topological class of the system, we explore
nontrivial extensions of the SSH model. The ability to
initialize the system with site-specific spin excitations
and probe their evolution allows the study the compe-
tition between interaction terms in the fermionic repre-
sentation and the topological properties of the system
associated with the free-fermionic Hamiltonian. These
findings represent a significant advancement in the ma-

nipulation of quantum phases of matter and open up
new avenues for exploring topological properties within
quantum systems.

The trapped-ion crystals under investigation consist
of 171Yb+ ions, with either L = 12 or L = 22 spins,
confined within a linear Paul trap on a chip [30–32].
Each ion possesses an effective spin created from two
“clock" levels within its electronic ground-state (|↑z⟩ ≡
|F = 1,M = 0⟩ and |↓z⟩ ≡ |F = 0,M = 0⟩) [33]. Our
approach involves the use of a equally-spaced array of
tightly focused laser beams, in conjunction with an or-
thogonal global beam. This combination enables the si-
multaneous driving of of Raman transitions between the
spin states of individual ions. The Raman addressing
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Figure 2. Edge States in a L = 22 Spin Crystal. Evolution of a single spin-excitation in a strongly-dimmerized (η̄ = 0.8)
crystal of L = 22 spins. a edge-excitation (j = 1) and, b bulk-excitation (j = 11). We repeat these experiments for all
1 ≤ j ≤ 22 single-spin excitations, and for each calculate the late-time-averaged spin s̄z,j excitation by averaging the values
in the orange rectangle; see Extended Data Fig. 2. c Late-time-averaged s̄z,j highlights the protection of edge excitations
over the bulk. Grey line shows the mean late-time excitation in all crystal sites, as calculated e.g., in the yellow box in b.
d-e Evolution of Edge excitation (j = 1, d) and bulk excitation (j = 11, e) as a function of the global Floquet phase shift ϕ.
d The edge shows greater protection at ϕ = π

4 and ϕ = 3π
4 where the Hamiltonian features a reflection symmetry leading to

Zak phase quantization and topologically protected (quasi-) zero-energy modes. Maximal protection is observed for ϕ = 3π
4

for which the Hamiltonian has a nontrivial topological phase. e The bulk excitation is minimally-affected by the Floquet
phase.

method is attuned to the motion along the wavevector
difference between the individual and global address-
ing Raman beams and generates a spin-spin interaction
Hamiltonian mediated via the collective motional modes
of the ion chain. We initialize and measure the spins us-
ing optical pumping and state-dependent fluorescence
techniques [33], and the collective motional modes of
the ion chain are initialized to near their ground state
through sideband cooling [34].

The spin interaction we implement takes the form
of an effective long-range XY Hamiltonian, with inter-
action bond matrix Jij between spins i and j whose
range is controlled (see Methods) [17]. We first ren-
der the spin bonds between nearest-neighboring spins
nearly uniform, by controlling the local laser amplitudes
at each ions, correcting for the non-uniform participa-
tion of ions in the driven phonon modes (see Methods).

We then control the dimerization between the spins by
introducing periodic Floquet fields that manifest as site-
dependent transverse magnetic fields B(j)

z (t) oscillating
at frequency ω and with a local site-dependent phase φj

and scaled amplitude η̄ (see Methods). These Floquet
fields modify the spin-spin Hamiltonian and in the high-
frequency limit ω ≫ |Jij | suppress bonds between spins
driven by unequal local field amplitudes between sites
i, j where φi ̸= φj . This results in an effective static
Hamiltonian, given by (ℏ = 1)

H =
∑
i,j

Jij

(
ŝ

(i)
+ ŝ

(j)
− + ŝ

(i)
− ŝ

(j)
+

)
(1)

where Jij represents the transformed coefficient dressed
by the Floquet field, and ŝ(j) are the spin- 1

2 operators
of the j-th ion.
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Figure 3. Signatures of Fermionic Interaction terms. Evolution of a L = 12 spin crystal with long-range interactions,
initialized in a staggered spin state. a, In the absence of Floquet fields (η̄ = 0), the spin excitations quickly hop and
thermalize. With full Floquet modulation (b, η̄ = 0.6 and c, η̄ = 1), thermalization is partially suppressed and the the edges
become more protected. d-f Simulation of the η̄ = 0.6 configuration(subplot b) of spins j = 2 (d), j = 4 (e) and j = 9
(f). Experimental data (black circle with errorbar) agree well with a full simulation of an equivalent fermionic Hamiltonian
containing interaction terms (green curve), but not with a long-range free-fermionic Hamiltonian (magenta curve). These
results are contrasted with short range spin models which are fully explained by free-fermionic evolution. See text and
Extended Data Fig. 3.

We apply a periodic phase pattern φj = π
2 j + ϕ for

1 ≤ j ≤ L, and this structure renders the Hamiltonian
in Eq. (1) reflection symmetric and induces a nontrivial
topological phase for ϕ = 3π

4 (see Methods). In Fig. 1a-
c, we display the measured bond matrices for a L = 12
crystal for different amplitudes of the Floquet drive; see
Methods for details of the bond-strength measurement.
Increasing the Floquet drive from η̄ = 0 to η̄ = 1 ef-
fectively suppresses the odd bonds in comparison to the
even ones, allowing for control over the dimerization of
bonds in the chain.

We first examine the effects of Floquet dressing on
a solitary spin excitation positioned at the edge of the
crystal. In Figs. 1d-f, we present the measured evo-
lution dynamics of each spin ⟨ŝ(j)

z (t)⟩ governed by the
Hamiltonian in Eq. (1) for a crystal comprising L = 12
spins, all oriented downwards, except for the spin at
edge j = 1 that is aligned upwards along the spin z-
axis. The temporal progression is normalized with re-
spect to the mean nearest-neighbor bond strength J in
the absence of the Floquet drive. In the absence of the
Floquet field (η̄ = 0), the spin excitation tends to ther-

malize with the chain over time, as illustrated in Fig. 1d.
With an increase in the strength of the Floquet field
(η̄ = 0.6, Fig. 1e), the process of thermalization no-
ticeably decelerates. When the chain is fully dimerized
with η̄ = 1, the spin excitation remains confined to the
edge and ceases to thermalize, as exemplified in Fig. 1f.
We present the edge spin’s magnetization quantitatively
as a function of the drive’s amplitude in Fig. 1g. Ad-
ditionally, we present the excitation spreading rate in
Fig. 1h, which is extracted from to the slope of the yel-
low solid lines shown for instance in Fig. 1(d-f) (see
Methods). The measured values align closely with a
theoretical model, computed numerically via the Uni-
tary evolution of the spins, as displayed in Extended
Data Fig. 1(a-e). Further details regarding the theoret-
ical model can be found in the Methods section.

A key characteristic of topological insulators is the
distinct response of excitations at the edges compared
to those within the crystal’s bulk. We repeated our ex-
periment using a strongly dimerized crystal (η̄ = 0.8)
with L = 22 spins and a longer interaction range; see
Methods for experimental details. We considered all



5

a b

c d

Figure 4. Domain wall dynamics. The evolution of two domain walls in a L = 12 spin crystal, comprising of multiple
spin-excitations. a-b Short range spin-spin interaction, and c-d Long-range spin-spin interaction. a,c Absent the Floquet
field (η̄ = 0), the domain walls thermalize as excitations are free to hop. b,d Fully dimmerized crystal (η̄ = 1). b Boundary
excitations between the walls are exchanged coherently, and the domain walls maintain their state in b or partially thermalize
in d. The results in a-d agree well with numerical calculation of the spin evolution, see Extended Data Fig. 4.

possible configurations of single-spin excitations at sites
1 ≤ j ≤ 22 as shown in Extended Data Fig. 2 and
Fig. 2a (j = 1) and Fig. 2b (j = 11). Our findings re-
veal that while bulk excitations rapidly thermalize, edge
excitations feature greater isolation. To quantify this
difference, we calculated the late time-averaged mag-
netization of each excited spin at site j, denoted as
s̄z,j = 2

∫ 2
1.5⟨ŝ(j)

z (τ)⟩dτ , with τ = Jt/π, as depicted in
Fig. 2c. In comparison, dash line denotes the measured
late-time-averaged excitation of the crystal, s̄z, aver-
aged over all crystal sites. The enhanced persistence of
spin excitations at the edges (j = 1 or j = 22), com-
pared to the bulk of the crystal (2 ≤ j ≤ 21), serves as
a distinctive hallmark of the crystal’s topological state.

The observed protection of spins near the edges origi-
nates from the topological structure induced by the Flo-
quet fields. To investigate this, we probe the magneti-
zation of the initially excited spin as a function of the
global phase of the Floquet fields ϕ, while maintaining
a fixed modulation amplitude η̄ = 0.8 for the L = 22
crystal. In Fig. 2d, we study a single edge excitation
(j = 1), finding maximal protection at ϕ = 3π

4 , the value
at which the Hamiltonian becomes reflection symmet-

ric, the Zak phase is quantized with a nonzero value,
and the topological phase is expected to be nontrivial
[29] (see Methods). In contrast, the evolution of a spin
within the bulk (with j = 11), as shown in Fig. 2e, is
barely affected, rapidly losing the excitation for all val-
ues of ϕ. These results underscore the significance of
the site-dependent pattern of the Floquet field and the
reflection symmetry that imparts topological properties
to the Hamiltonian.

Our ability to manipulate the spin states and the
range of interactions offers opportunities for exploring
topological and dynamics beyond single-spin excitation.
In Fig. 3(a-b), we depict the evolution of an L = 12
spin crystal intialized in a Néel state, where spins at odd
(even) lattice sites point upwards (downwards). Here we
set the spin-spin interaction range to be long-range (see
Methods). While absent the Floquet fields (η̄ = 0) all
spin excitations thermalize rapidly (Fig. 3a), in the pres-
ence of Floquet fields (η̄ = 0.6 in Fig. 3b and η̄ = 1 in
Fig. 3c) the thermalization of excitations greatly slows
down, predominantly near the edges of the crystal.

To interpret this multi-excitation dynamics and asso-
ciate it with the role of fermionic interaction, we com-
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pare the experiment’s dynamics under two models. The
first model involves a complete fermionic representation
of the Hamiltonian as defined in Eq. (1). The second
model considers free fermionic evolution with long-range
effects by removing fermionic interaction terms (see
Methods). We observe qualitatively different behavior
between these two models while finding a strong agree-
ment between the measured data and the exact model,
as exemplified in Fig. 3(d-f). This finding underscores
the importance of interaction terms in the dynamics.
These terms enhance thermalization and oppose topo-
logical protection, although they do not eliminate it. To
further highlight these findings, we replicate these mea-
surements and analyses for a crystal with short-range
interactions, as shown in Extended Data Fig. 3. In this
case, we observe good qualitative agreement with the
free fermionic model, in line with the expectations of
the standard SSH model- a free fermionic model.

Before concluding, we present another intriguing
multiple-excitation scenario where the spin excitations
are ordered to form two domain walls. The left half
of the L = 12 crystal are oriented upwards and those
in the right half point downwards. As we increase the
amplitude of the Floquet drive (η̄ = 0 in a, η̄ = 1 in
b), for a short-range interacting crystal, we observe the
suppression of thermalization of the two domain walls
and the exchange of excitations between the spins at
the boundary becomes evident. This result qualitatively
agrees with the SSH model, which assumes nearest-
neighbor interactions. Performing the same experiment
for a bond matrix with a significantly longer interaction
range (η̄ = 0 in c, η̄ = 1 in d) yields qualitatively dif-
ferent results. We observe a combination of thermaliza-
tion and boundary excitation, attributed to the bonding
of distant spins. These experimental results align well
with our numerical spin model, as shown in Extended
Data Fig. 4. The dynamics of the domain walls are ex-
plained by the coherent oscillation between the initial
state and the edge-states at the boundary of each of the
two domains, as the interaction matrix element between
those states dominates over the coupling the bulk (see
Methods). Our experimental results thus demonstrate,
for the first time, the creation of edge states around
a boundary set by the initial state rather than system
parameters.

In summary, we present an investigation into the
topological properties of a trapped-ion crystal, lever-
aging optical Floquet fields with single-atom resolution
within the crystal. Our study encompasses an explo-
ration of thermalization and the protection of single-
spin excitations, highlighting the notably distinct be-
havior at the crystal’s edges compared to the bulk. Fur-
thermore, we explore the role of the topological struc-
ture controlled by the spatial phase of the periodic drive.
In addition, our examination of multiple excited states,
subject to varying ranges of interaction, provides means

for studying the delicate balance between many-body
interactions and their influence on the topological na-
ture of the Hamiltonian.

This work opens up new avenues for investigat-
ing topological quantum phases of matter in low-
dimensional systems, for example by studying many-
body ground states and spin-wave interactions. Our
trapped ion simulator allows to use an interacting spin
system both with tunable long-range interactions and
quantum effects, thus addressing some of the limitations
found in other photonic or atomic platforms. Further-
more, the possibility to prepare and measure quantum
states at the single-site level permits to study topolog-
ical effects arising from dynamics of non-trivial initial
states.
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Methods
ADDITIONAL EXPERIMENTAL DETAILS

We implement the long-range XY Hamiltonian by ap-
plying the Ising spin-spin interaction Hamiltonian HXX
in the presence of a large transverse magnetic field
Hzmiltonian HZ. The Ising term is generated via Ra-
man transitions mediated by pairs of beams, which vir-
tually excite collective motion of the ions. One op-
tical beam passes through an acousto-optical modu-
lator (AOM). The AOM is simultaneously driven by
two radio-frequency (RF) signals, which split the op-
tical beam into two components with distinct frequen-
cies. These components are then imaged onto the ion
chain to address all ions globally. Another beam is split
into an array of more than thirty tightly focused beams,
passing through a multi-channel AOM. Twenty-two in-
dependent RF signals control the frequency and ampli-
tude of 22 beams, with all other beams being blocked.
This combination concurrently drive the first red and
blue sideband transitions in the dispersive regime, with
nearly symmetric detunings from the radial collective
motional modes. This configuration realizes the Ising
Hamiltonian HXX = 2

∑L
i,j Jij ŝ

(i)
x ŝ

(j)
x with a symmetric

spin-spin interaction matrix Jij [17].
The Jij matrix we realize can be calculated through

[17, 20]

Jij =
N∑

k=1

ηikηjkΩiΩj

2(∆ + ωN − ωk) . (2)

Here, ηik = 0.08bik are the Lamb-Dicke parameters de-
scribing the coupling between spin i and motional mode
k through the Raman transitions, with bik as the mode
participation matrix elements [32]. Ωj denotes the res-
onant carrier Rabi frequency at ion 1 ≤ j ≤ L for each
tone, and ωk represents the motional frequencies along
one radial direction, labeled in decreasing order with
1 ≤ k ≤ N . The L = 12 (L = 22) spin crystal is con-
structed using the middle ions in a chain of N = 15
(N = 27) atoms, with N −L auxiliary ions located near
the edges of the chain1. These auxiliary ions participate
in collective motion via their Coulomb coupling to the
other ions, but are not illuminated by the Raman beams
(i.e. their equivalent Ωj is set to zero). Consequently,
the evolution is independent of the auxiliary ions’ spins,

1 For the N = 15 chain, one auxiliary ion is positioned at the left
end of the L = 12 crystal spin (site j = 0), and two ions are
placed at the right end (sites j = 13, 14). In the case of the
N = 27 chain, there are two auxiliary ions on the left side (sites
j = −1, 0) of the L = 22 spin crystal, along with an additional
three ions on the right edge (sites j = 23, 24, 25).

as their Jij matrix elements are identically zero, and
they are not considered as part of the spin crystal de-
scribed in the main text. Their presence contribute to
increasing the trapping potential near the edges of the
crystal, ensuring nearly uniform spacing between the L
inner ions, with an average distance of approximately
3.75µm. This uniformity is crucial for aligning with
the uniformly-spaced array of individually addressing
beams.

The trap frequencies and mode participation factors
are determined by the trapping potential. We employ
a quadratic trapping potential in the radial direction
with center-of-mass frequency of ω1 = 2π × 3.08 MHz
and an axial electrostatic potential of V (x) = c4x

4 +
c2x

2. For the 15-ion chain, the coefficients are c2 =
0.11, eV/mm2 and c4 = 1.6 × 103, eV/mm4, while for
the 27-ion chain, they are c2 = −0.1, eV/mm2 and c4 =
235, eV/mm4. Here, x is the coordinate along the chain
axis. These potentials determine the frequencies of the
collective modes of motion. The effective wave-vector
of the optical field is aligned to selectively drive only
one specific set of radial modes. For the N = 15 ion
chain, the frequencies are ωk ∈ {3.08, 3.07, 3.05, 3.03,
3.01, 2.98, 2.96, 2.93, 2.90, 2.88, 2.85, 2.83, 2.80, 2.78,
2.78|1 ≤ k ≤ 15} MHz. In the case of the N = 27 ion
chain, the frequencies of the collective motional modes
are as follows: ωk ∈ {3.08, 3.07, 3.07, 3.06, 3.05, 3.04,
3.03, 3.02, 3.00, 2.99, 2.98, 2.96, 2.95, 2.93, 2.92, 2.90,
2.89, 2.87, 2.86, 2.84, 2.83, 2.82, 2.81, 2.80, 2.79, 2.77,
2.77|1 ≤ k ≤ 27} MHz.

We control the range of interaction of the realized Jij

matrices by adjusting the Raman beat-note detuning ∆,
which is measured relative to the transition of the least-
frequency radial (zig-zag) motional mode. We further
achieve relatively uniform spin bonds (absent the Flo-
quet field) through control of the individual beams’ am-
plitudes, compensating for the rapid spatial variation of
the low-frequency phonon modes participation matrix
elements. In this work, we implemented three differ-
ent interaction matrices. The first interaction matrix
Jij , calculated using Eq. (2) for the L = 12 spin crystal
(N = 15 ion chain) is depcted in Extended Data Fig. 5a.
It was acheived with ∆ = −99 kHz, J = 0.25 kHz and by
normalizing the beams’ amplitudes in the array to fol-
low Ωj/Ω1 = {1.0, 1.0, 0.65, 0.87, 0.69, 0.97, 0.74, 0.97,
0.68, 0.86, 0.65, 0.99|1 ≤ j ≤ 12}. This configuration
results in a short-range interaction matrix, which decays
approximately exponentially and is staggered in its sign,
as expected from detuning near the zig-zag mode [18].
We estimated the average bond strength between spins
i and j as J̄(d) = 1

L−d

∑L−d
n=1 |Jn,n+d| where d = |i − j|

represents the distance between the two spins. The cal-
culated J̄(d) is presented in Extended Data Fig. 5d (dia-
monds) and fitted with a curve J̄(d) = 3.9J×e−1.36|i−j|.
This experimental configuration was used in generating
Fig. 1, Fig. 4a-b, Extended Data Fig. 1, Extended Data
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Fig. 3g-l and Extended Data Fig. 4g-l.
The second interaction matrix Jij for the L = 12

spin crystal (N = 15 ion chain) is illustrated in Ex-
tended Data Fig. 5b. It exhibits a longer-range inter-
action, with all coefficients having the same positive
sign. This matrix is realized by detuning the Raman
beatnote near the center of mass (COM) mode, with
∆ = 29 kHz + ω1 − ωN and J = 0.25 kHz. use a rela-
tive Rabi frequency profile Ωj/Ω1 = {1.0, 1.0, 1.10, 1.07,
1.16, 1.10, 1.17, 1.10, 1.16, 1.07, 1.10, 1.0|1 ≤ j ≤ 12} to
make the nearest neighbor (NN) bonds nearly uniform
in strength. The calculated J̄(d) is presented in Ex-
tended Data Fig. 5d (asterisks) and approximated by
the curve J̄(d) = 1.5J × e−0.42|i−j|. This configuration
was used to generate Fig. 3, Extended Data Fig. 3a-f
and Extended Data Fig. 4a-f.

The third configuration was employed for the L = 22
spin crystal (N = 27 ion chain) as depicted in Extended
Data Fig. 5c. In this setup, we detuned ∆ = −45
kHz below the zig-zag mode, set J = 0.2 kHz and
achieved relatively uniform nearest neighbor (NN) spin
bonds by configuring the relative Rabi frequencies as
Ωj/Ω1 = {1.0, 0.59, 0.59, 0.4, 0.47, 0.37, 0.50, 0.44, 0.60,
0.51, 0.68, 0.54, 0.68, 0.52, 0.62, 0.45, 0.53, 0.39, 0.49,
0.42, 0.61, 0.60|1 ≤ j ≤ 22}. The calculated J̄(d) is
presented in Extended Data Fig. 5d (squares) and can
be approximated by the curve J̄(d) = 2.7J × e−|i−j|.
This configuration was used in generating Fig. 2 and
Extended Data Fig. 2.

Simultaneously with the Ising interaction, we ap-
ply the transverse magnetic field Hamiltonian HZ =∑L

j=1 B
(j)
z ŝ

(j)
z [17, 20]. We achieve independent con-

trol over the the local magnetic field affecting each spin
by shifting the optical frequency of the individually-
addressing beam using its AOM channel. Since the
spin is measured relative to the laser rotating frame, an
instantaneous shift of the optical frequency of the jth
beam by B

(j)
z (t) Hz relative to the carrier transition is

equivalent to the application of such a transverse mag-
netic field in the spin frame. We shift and modulate the
optical frequency to generate the magnetic fields that
take the form

B(j)
z (t) = B0 + η̄ z0ω√

2 cos (ωt) cos (φj) , (3)

where z0 ≈ 2.4 is the first root of the 0th Bessel func-
tion of the first kind. We experimentally set B0 = 18J
and ω = 6J for all configurations. To ensure that this
magnetic field is applied correctly, we independently cal-
ibrate for light-induced shifts generated by the Raman
light, and compensate for them by shifting the optical
frequency of each individually-addressing beam in the
array. We also ensure that the amplitudes of the red and
blue tones are balanced, to minimize light shift noise in
the presence of the Ising interaction.

We measure each Jij element in Fig. 1a-c by turning
on the two beams addressing the ith and jth ions while

turning off all other beams in the array. The ions are ini-
tialized in the state |↑(i)

z ↓(j)
z ⟩ for j > i. Unlike Ref. [20],

here, the magnetic field in Eq. (3) is applied during the
measurement, along with a constant-amplitude pulse,
and oscillations in the populations are measured. We
fit the average staggered magnetization ⟨ŝ(i)

z − ŝ
(j)
z ⟩ to

the function exp (−Γijt) cos(πJijt) using Jij and Γij as
fitting parameters.

DIMMERIZATION OF BONDS BY THE
FLOQUET DRIVE

The transverse field Ising model under consideration
is effectively described by the Hamiltonian in Eq. (1).
This representation is achieved through a frame trans-
formation that rotates each spin by its Larmor fre-
quency corresponding to its local transverse field. Given
that the applied transverse fields dominate the Ising in-
teraction (B(j)

z ≫ J̄), we can express it as the Ising
Hamiltonian using the raising and lowering spin opera-
tors ŝ(i)

x ŝ
(j)
x ≈ 1

2 (ŝ(i)
+ ŝ

(j)
− + ŝ

(i)
− ŝ

(j)
+ ). This transformation

introduces fast oscillations to the terms involving ŝ(i)
± ŝ

(j)
±

[17].
The periodic drives applied to the system modify the

bare spin interaction matrix Jij and yield a scaled in-
teraction matrix Jij [29].

Jij = j0
(
2η sin

(
π
4 (i+ j) + ϕ

)
sin

(
π
4 (i− j)

))
Jij . (4)

Here, j0(x) denotes the 0th Bessel function of the first
kind and η = z0η̄√

2 . At values of ϕ = π
4 and ϕ = 3π

4 edge-
states are topologically protected by inversion symme-
try, and the Zak phase of the long-range SSH model
is quantized [29]. Therefore, we specifically focus our
discussion on these particular points.

The topological properties of our model become ev-
ident when we explicitly define the sub-lattice struc-
ture. We assume that N is even and divide the chain
into odd (A sublattice) and even sites (B sublattice),
as illustrated in Fig. Extended Data Fig. 6. We ex-
press the N × N interaction matrix Jij in terms of
four N/2 × N/2 sub-matrices, with elements denoted
as JAn;Am, JBn;Bm, JAn;Bm, JBn;Am. Here JAn;Bm de-
notes the coupling between site n in sublattice A, and
site m in sublattice B, and so on. For values ϕ = π

4 , 3π
4 ,

we obtain

JAn;Am = JBn;Bm = J(2d)D(d), (5)

where d = n−m, and D(d) is a dimerization parameter
that takes the values D(d) = j0(0) = 1 if d is even,
and D(d) = j0(η̄z0) if d is odd. Equation (5) implies
that the chain possesses inversion symmetry, assuming
that the original non-dressed interaction is homogeneous
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(i.e. Jnm = J(d)), a condition not fulfilled for values ϕ ̸=
π
4 , 3π

4 . We also have non-diagonal blocks represented by

JAn;Bm = J(2d− 1)D̄(d), (6)

with a different dimerization parameter D̄(d). If d is
even, it takes values D̄(d) = j0(0) for ϕ = π

4 and D̄(d) =
j0(η̄z0) for ϕ = 3π

4 . If d is odd, D̄(d) = j0(η̄z0) for ϕ = π
4

and D̄(d) = j0(0) for ϕ = 3π
4 .

The bulk properties of the system are described in
the plane-wave basis with momentum k in which the
dressed interaction matrix can be written in terms of
the four blocks

J (k) =
(
E(k) ∆(k)
∆∗(k) E(k)

)
= E(k)I + ∆(k)σ+ + ∆∗(k)σ−. (7)

with E(k) =
∑

d J(2d)D(d)eikd, and ∆(k) =
∑

d J(2d−
1)D̄(d)eikd. The matrix J (k) possesses both time-
reversal and inversion symmetry,

J (k) = J (−k)∗,

J (k) = IJ (−k)∗I, (8)

with the inversion operator I = σx [35–37].
In the short-range limit (J(d) = 0 beyond nearest-

neighbors, d > 1), the matrix Jij , corresponds to
the standard SSH model with ϵ(k) = 0 and ∆(k) =
J(1)

(
D̄(0)eikd + D̄(1)e−ikd

)
. If we adiabatically de-

form the matrix J(k) by increasing the range of interac-
tions, the number of edge states - which is a topological
invariant - will be conserved. Such adiabatic deforma-
tion of J (k) is valid as long as the gap remains open and
the symmetries of the system are preserved, a condition
guaranteed at ϕ = π

4 , 3π
4 .

To illustrate this scenario, we consider the eigenstates
of the matrix J for an exponentially decaying interac-
tion profile

Jij = Je−|i−j|/ξ (9)

with a non-zero dimerization parameter. In the limit
ξ ≪ 1, we are in the standard short-range SSH model
(see Extended Data Fig. 7 for a crystal of L = 50 spins).
Dimerization induces two zero-energy mid-gap states.
By adiabatically deforming the interaction range of this
Hamiltonian while keeping ϕ = 3π

4 , we find that the
two degenerate states survive. However, when the in-
teraction is so long-range that the gap is too small, the
conditions for adiabatic deformation are no longer met,
and the edge-states merge with the bulk and disappear.

FERMIONIC REPRESENTATION

Spin SSH models can be represented in terms of free
fermions, such that their dynamics is governed by single-

particle physics. Long-range terms lead to fermion-
fermion interactions. This fermionic representation re-
lies on the Jordan-Wigner transformation,

ŝ
(j)
− = 1

2 ĉje
−iπ

∑
j′<j

ĉ†
j′ ĉj′

,

ŝ
(j)
+ = 1

2e
iπ

∑
j′<j

ĉ†
j′ ĉj′

ĉ†
j ,

ŝ(j)
z = ĉ†

j ĉj − 1
2 . (10)

Here ĉj and ĉ†
j are the fermionic anihilation and creation

operators in site j, respectively. The long-range spin
Hamiltonian in Eq. (1) casts as,

H =
∑
i,j

ĉ†
i Ĵij ĉj , (11)

with the modified interaction matrix

Ĵij = Jij

∏
i<j′<j

(
2ĉ†

j′ ĉj′ − 1
)
. (12)

For the scenario of short range interactions, the spin
SSH Hamiltonian is equivalent to the free fermion one,
since Ĵi,i+1 = Ji,i+1. However, for long range inter-
action, spin-spin interactions Ĵi,i+r with r > 1 include
string operators that depend on the fermionic number
operators at intermediate sites. This leads to many-
body fermion-fermion interaction terms, rendering the
Hamiltonian in Eq. (11) non-quadratic in the fermionic
operators. Our numerical simulation of the long-range,
free-fermionic Hamiltonian, shown in Fig. 3(d-f) is real-
ized by solving the Evolution governed by the fermionic
Hamiltonian in Eq. (11) for Ĵij = Jij , thus neglecting
the string operators that lead to fermion-fermion inter-
actions.

DOMAIN WALL DYNAMICS

The domain wall evolution observed in Fig. 4 can be
understood by expressing the interaction between and
within the domains. The initial state of the spin crystal
is represented as |ψ0⟩ = |↑⟩1 . . . |↑⟩ N

2 −1 |↓⟩ N
2
. . . |↓⟩N ≡

|↑⟩L |↓⟩R, and the interaction matrix is decomposed into
J = JL + JR + JLR. Here, JL and JR are the inter-
action matrix within the left-side (j = 1, . . . , N/2) and
the right-side spins (j = N/2 + 1, . . . , N), respectively,
and JLR is the interaction matrix between the left and
right sides. The initial state is an eigenstate of the spin
Hamiltonian corresponding to uncoupled halves, satis-
fying ∑

ij

(JL + JR)ij ŝ
(i)
+ ŝ

(j)
− |ψ0⟩ = 0. (13)

However, the term JLR couples |ψ0⟩ to excited
states |ψn⟩L |ψm⟩R with energy ϵn + ϵm. These
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excited states are defined as spin waves |ψn⟩L =
2

∑
j∈L ψ

L
n,j ŝ

(j)
− |↑⟩L and |ψn⟩R = 2

∑
j∈R ψ

R
n,j ŝ

(j)
+ |↓⟩R,

with energies given by JL(R)ψ
L(R)
n = ϵnψ

L()
n . The

coupling strength between the initial domain wall
state and these excited spin-wave states is given by
2

∑
ij (JLR)i∈L,j∈R ψ

L
n,iψ

R
n,j . For the case of short-range

interaction and strong dimerization, this coupling is
stronger when n and m are edge-states on the bound-
ary between each of the sides, explaining the coherent
oscillation observed in Fig. 4b. When long-range terms
are introduced, long-range couplings are activated be-
tween the initial state and spin-wave states n and m
n the bulk, explaining the spread of excitations along
both sides of the chain.

NUMERICAL SIMULATIONS AND ANALYSIS

We numerically simulate the Unitary dynamics of the
L = 12 crystal corresponding to the full time-dependent
Hamiltonian H(t) = HXX + HZ(t) using the experi-
mental parameters described in Methods. We calcu-
late the mode participation matrix elements by solving
the Laplace equation assuming the trapping potential
described above, from which we find the positions of
the ions. Then through lineraization we determine the
mode participation matrix elements, used for the calcu-
lation of the Jij matrices. We represent the spin matri-
ces, the Hamiltonian, and the quantum spin state using
the sparse package in Matlab, and solve the Unitary
evolution using standard ordinary differential equations
(ODE45) solver.

To quantify the thermalization process due to interac-
tion, we compute the thermalization rate as the inverse
of the slope of the linear line connecting the regions
with magnetization above and below the equilibrium
value of ⟨s(j)

z ⟩= 1
2L for L = 12. We then use a line of

τ = (j−1)/vs to fit the boundary in the image, where j
is the ion index and τ = Jt/π is the evolution time. The
fitted slope is presented as a yellow line in Fig. 1 (d, e,
and f) and Extended Data Fig. 1 (a, b, and c). Dashed
lines show the values for the 95% confidence interval of
the fit.
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a b c

d e

Extended Data Fig. 1. Numerical calculation of edge-excitation. We numerically calculated the evolution of a single
spin excitation at j = 1 for a L = 12, reproducing numerically the measurements presented in Fig. 1d-h.
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Extended Data Fig. 2. Single-Spin Excitation in an L = 22 Crystal. Evolution of a single spin excitation over time for
strong Floquet modulation with η̄ = 0.8. ℏJ represents the average nearest-neighbor spin bond energy absent the Floquet
drive. Each subplot, denoted as a-v, corresponds to one of the 22 experiments where the jth site is initially excited, with
1 ≤ j ≤ 22. Rectangular yellow box highlights the data which is used to construct the late-time-average spin s̄z,j presented
in 2c. The mean late-time-averaged excitation of the crystal s̄z (grey line in Fig. 2c) is independently extracted for each
configuration by averaging over all spins in the crystal s̄z = 1

11

∫ 2
1.5⟨ŝ(n)

z (τ)⟩dτ with τ = Jt/π where the sum goes over all
1 ≤ n ≤ 22 spins in the crystal.
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a b c

d e f

g h i

j k l

Extended Data Fig. 3. Evolution of staggered spin state. We initialize the L = 12 crystal in the Néel spin state
|↑↓↑↓ ... ↑↓⟩ along the z axis and present the experimentally measured evolution for a-c long-range spin-spin interaction, g-i
short range spin-spin interaction. The numerically calculated evolution for the same configurations is depicted for the long
range interaction in d-f and for short range interaction in j-l. a,d,g,j absent the Floquet drive (η̄ = 0), the spins thermalize
quickly as excitations hop. In the presence of Floquet fields, η̄ = 0.6 in b,e,h,k and η̄ = 1 in c,f,i,l, the thermalization
is suppressed and neighboring sites exchange exitations more efficiently while the edges remain isolated. For long range
interaction, the suppression of thermalization is partial, and cannot be explained with a minimal model including only free-
fermionic terms (see text).
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a b c

d e f

g h i

j k l

Extended Data Fig. 4. Evolution of domain walls. We initialize the L = 12 crystal in the two-domain state |↑↑↑↑↑↑↓↓↓↓↓↓⟩
along the z axis and present the experimentally measured the evolution for a-c long-range spin-spin interaction, g-i short
range spin-spin interaction. The numerically calculated evolution is depicted for the long range interaction in d-f and for
short range interaction in j-l. a,d,g,j absent the Floquet drive (η̄ = 0), the spins thermalize quickly as excitations hop
through the boundary. In the presence of Floquet fields, η̄ = 0.6 in b,e,h,k and η̄ = 1 in c,f,i,l, the thermalization is
suppressed and spins at the boundary between the two domains exchange exitations more efficiently.
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Extended Data Fig. 5. Calculated Spin-Spin Interaction Matrix. a-b calculated interaction matrix for the L = 12
crystal. a, Short-range interaction. b, Long-range interaction. c, The interaction matrix for the L = 22 spin crystal. The
staggered sign in a,c originates from the detuning near the zig-zag phonon modes, while the positive sign in b results from
detuning near the center of mass mode. These matrices are calculated using Eq. 2 and the parameters provided in the text.
d Average bond strength between spins i and j at a distance |i− j| for the three configurations, normalized by the average
nearest neighbor bond strength J . Exponential fits provide approximations for the interaction range.

Extended Data Fig. 6. Sub-lattice structure of the long-range SSH model. The dimerization pattern of long-range
couplings among different sublattices (left), and within the same sublattice (right) for the topologically non-trivial case
ϕ = 3π

4 . Lines represent the Dimerization parameter D̄ (left) and D (right); see Eqs. (5-6). Weak bonds, suppressed by the
Floquet fields and weighted by a dimerization parameter j0(η̄z0) are shown as dashed lines, while strong unsuppressed bonds
are shown as continuous lines.
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Extended Data Fig. 7. Sub-lattice structure of the long-range SSH model. We consider the eigensystem of the
interaction matrix, Jψm = ϵmψm in the presence of inversion symmetry. (a - c) Eigenvalues of J with interaction range
ξ = 0.1 (a), ξ = 2 (b) and ξ = 6 (c) [see Eq. (9)], in a crystal of L = 50 spins, moderate dimmerization η̄ = 0.6 and ϕ = 3π

4 .
(d - f) Wavefunction ψm,j of mid-gap states with index m = N/2, N/2 + 1 for the values of ξ listed above. At shorter
interaction ranges these states are localized near the edges, while at longer range they are strongly mixed with the bulk.
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