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Demonstration of three- and four-body 
interactions between trapped-ion spins

Or Katz    1,2,3 , Lei Feng1,2,3 , Andrew Risinger4, Christopher Monroe1,2,3,5 & 
Marko Cetina1,2,3

Quantum processors use the native interactions between effective spins 
to simulate Hamiltonians or execute quantum gates. In most processors, 
the native interactions are pairwise, limiting the efficiency of controlling 
entanglement between many qubits. The capability of manipulating 
entanglement generated by higher-order interactions is a key challenge 
for the simulation of many Hamiltonian models appearing in various 
fields, including high-energy and nuclear physics, as well as quantum 
chemistry and error correction applications. Here we experimentally 
demonstrate control over a class of native interactions between trapped-ion 
qubits, extending conventional pairwise interactions to a higher order. 
By exploiting state-dependent squeezing operations, we realize and 
characterize high-fidelity gates and spin Hamiltonians comprising three- 
and four-body spin interactions. Our results demonstrate the potential 
of high-order spin interactions as a toolbox for quantum information 
applications.

Useful quantum computers and simulators rely on the controllable gen-
eration of quantum entanglement between their elementary constituents, 
such as qubits or effective spins. Such entanglement allows the efficient 
exploration of a large state space, which can speed up the computation of 
certain problems1 or the simulation of the dynamics or phases of model 
physical systems2,3. The generation of entanglement relies on the native 
interactions between subsets of spins, which in most quantum platforms 
is pairwise4–6. However, higher-order interactions are often featured in 
Hamiltonian models in nuclear and high-energy physics7–10 and spin sys-
tems11–15, as well as quantum circuits and algorithms in quantum chemis-
try16–20, error correction codes21,22 and other applications23–29. Sequential 
or parallel application of universal one- and two-body gate sets can, in 
principle, generate any unitary mapping in Hilbert space that is equiva-
lent to evolution under high-order interactions1. Yet, such constructions 
carry a large overhead in the number of Trotterization steps30 or entan-
gling operations31, thereby limiting the practical performance of such an 
approach in the presence of decoherence and noise.

From a fundamental view, few-body (>2) interactions can lead to 
qualitatively different behaviours compared with pairwise interactions, 

as seen across different fields of physics32–34. The study and search for 
N-body interactions has, thus, become a central research avenue in 
most quantum platforms, from neutral atoms35–40 and superconduct-
ing systems39,41–44 to chains of trapped atomic ions25,27,45–48. Yet, for 
trapped-ion processors, which feature dense and controllable qubit 
connectivity through phonon modes and very long qubit coherence 
times, robust tunable and scalable interactions beyond the pairwise 
limit have never been demonstrated.

Here we demonstrate a new class of native higher-order interac-
tions between qubits in a trapped-ion quantum processor. To do this, we  
apply a state-dependent squeezing optical drive, which is a simple 
extension over the conventional state-dependent displacement 
used for Mølmer–Sørensen (MS) pairwise gates4,49,50. Such squeezing  
operations have been applied to trapped-ion systems to improve 
the performance of pairwise gates51,52. Here we instead exploit 
state-dependent squeezing to generate three- and four-body inter-
actions53,54. We outline avenues to extend the scheme and highlight  
its potential use for quantum computation and simulation at  
larger scales.
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the pairwise MS interaction. Here the geometric phase is accumulated 
by a sequence of alternating displacement and squeezing operations, 
which move the phonon wavepacket in closed loops in the phase space.

To demonstrate higher-order interactions, we first consider the 
conventional MS interaction between two ions in a chain of three. Fol-
lowing cooling and spin initialization in the ||↓

(1)
z ↓(3)z ⟩ state via optical 

pumping, we drive the lowest-frequency radial phonon mode (‘zig-zag’ 
mode) with a sequence of displacement operations that are on reso-
nance with this mode; this sequence alternately acts on the two edge 
ions (Extended Data Fig. 1a), generating a rectangular-shaped loop in 
the motional phase space (Fig. 2a)49. The accumulated geometric phase 
corresponds to the phase-space area enclosed in the loop, which is 
given by Φ = Φ0σ̂(1)x σ̂

(3)
x . We control Φ0 = α2 by scaling the amplitude  

of the displacement pulses and fixing the total duration of the  
sequence to about 180 μs. We suppress the displacement of other 
phonon modes by pulse shaping of the displacement waveforms61 and 
also suppress the effect of uncompensated level shifts using a pair of 
echo pulses (Methods). The application of this phase gate jointly flips 

the spin pair into the state ||↑
(1)
z ↑(3)z ⟩ with probability p(↑(1)z ↑(3)z ) = sin2(Φ0), 

which is detected via state-dependent fluorescence (Fig. 2a). We deter-
mine the scale of Φ0 by fitting the data in Fig. 2a to a sine-squared 
function as a function of the Raman beam intensity.

We extend the pairwise interaction by interspersing the sequence 
squeezing operations that act only on the middle spin and are on reso-
nance with the zig-zag phonon mode (Extended Data Fig. 1b). These 
operations are realized as pairs of squeezing and anti-squeezing pulses 
that sandwich the displacement operations (Fig. 2). The squeezing 
forces scale the momentum displacements by the spin-dependent 
factor eξσ̂

(2)
x ≡ cosh(ξ ) + sinh(ξ )σ̂(2)x , where  is the identity matrix. 

The geometric phase is then given by the scaled rectangular area

Φ = Φ0 (cosh(ξ )σ̂(1)x σ̂
(3)
x + sinh(ξ )σ̂(1)x σ̂

(2)
x σ̂(3)x ) , (1)

manifesting two- and three-body interaction terms.
We demonstrate the action of this phase gate (Fig. 2b,c) on the 

initial states ||↓
(1)
z ↑(2)x ↓(3)z ⟩ and ||↓

(1)
z ↓(2)x ↓(3)z ⟩, for a total sequence time of 

less than 300 μs, including all the displacement, echo and squeezing 
operations. Similar to the MS interaction, this gate jointly flips the state 
of the two edge spins, but with probability P(↑(1)z ↑(3)z ) = sin2(e±ξΦ0) , 

The quantum processor, operated at the Duke Quantum Center, is 
based on a chain of 171Yb+ atomic ions confined in a linear Paul trap on a 
chip55–57 (Fig. 1a). Each ion represents a qubit or effective spin compris-
ing two ‘clock’ levels in its electronic ground-state (|↑z〉 ≡ |F = 1, M = 0〉 
and |↓z〉 ≡ |F = 0, M = 0〉). We drive motion-sensitive optical Raman 
transitions on the spin levels using pairs of non-co-propagating  
beams far detuned from any electronic transitions with a beatnote  
near the qubit frequency splitting58. The spins are initialized and meas-
ured using resonant optical pumping and state-dependent fluores-
cence techniques, resulting in a state preparation and measurement 
error of <0.5% per ion59.

The native entangling operations between spins are mediated by 
phonons and are driven by Raman transitions. The phonons reside in 
collective modes of motion that feature non-local and dense connecti vity 
with the spins. We simultaneously drive the red- and blue-sideband transi-
tions to displace or squeeze the motional state of ions in selective modes53. 
Driving the first-sideband transitions of the nth ion near the resonance 
of a single phonon mode generates a spin-dependent displacement σ̂(n)x α, 
where σ̂(n)x  is a transverse Pauli matrix and α is the complex displacement 
parameter. The phonon wavepacket of that mode, represented in the 
phase space of its harmonic motion54,60, is therefore displaced by +α if the 
spin points upwards along the x basis but by −α if the spin points down-
wards (Fig. 1b; equation (3) provides a mathematical description).

Alternatively, driving the second-sideband transitions of the  
nth ion at twice the resonance frequency of a single phonon mode  
squeezes the phonon wavepacket by a factor eξσ̂

(n)
x  along the horizontal 

phonon coordinate q, where ξ is given in equation (6); it is squeezed  
by a factor e−ξ if the spin points downwards along the x axis, but anti- 
squeezed by eξ if the spin points upwards along x (Fig. 1c; equation (5) 
provides a mathematical description). Temporal control over the 
amplitudes and phases of the Raman beams over time t enables  
full control over the magnitudes and phases of both α(t) and ξ(t), 
respectively, as well as the determination of spin axes of the spin- 
dependent forces (Methods and refs. 53,54). Crucially, the displace-
ment and squeezing operations depend on the state of the spins,  
but are independent of the initial phonon state in the Lamb–Dicke 
regime (when the radial motion along the optical beam is much  
smaller than the wavelength of the optical drive).

Coupling between different spins is realized by the accumula-
tion of spin-dependent geometric phase Φ that shifts the phase of the 
quantum state as |ψ〉→e–iΦ|ψ〉, similar to the underlying mechanism of 
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Fig. 1 | Native operations of a trapped-ion quantum processor. a, Linear chain 
of laser-cooled ion spins in a chip trap. An array of optical beams addressing 
individual ions enables exquisite control over the state of each spin and its 
coupling to collective phonon modes using Raman transitions (the additional 
global beam that forms the Raman pairs is not shown). b, Spin-dependent 
displacement of one phonon mode and its representation over the motional phase 
space. Simultaneous driving of the first red- and blue-sideband transitions of one 
ion near resonance with one phonon mode displaces the phonon wavepacket 
(grey Gaussian) into two distinct trajectories by ±α, depending on the state of that 

spin along the x direction over its Bloch sphere (purple arrow). c, Spin-dependent 
squeezing of one phonon mode. Simultaneous resonant driving of the second red- 
and blue-sideband transitions of one ion and one phonon mode squeezes (anti-
squeezes) the phonon wavepacket along one direction of phase space by e−ξ (eξ) 
depending on the state of that spin along the x direction. c, the phonon wavepacket 
is initially displaced from the origin to illustrate that the squeezing operation 
scales any initial displacement in a state-dependent manner. The thin lines in b 
and c represent the sideband spectrum and narrow purple and green Gaussians 
represent the spectral content of the Raman coupling near the sidebands.
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whose dependence on α2 is scaled by a factor eξ (e−ξ) and is conditioned 
on the state of the middle spin pointing upwards (downwards) along 
the x direction. The calculated evolution of ξ = 0.27, estimated inde-
pendently from equation (6) given the applied optical force amplitude, 
agrees well with the observation.

This many-body entanglement operation features full control over 
the amplitudes of the two- and three-body terms appearing in equa-
tion (1). We can, for example, eliminate the contribution of the two- 
body term by setting Φ0 = π/ cosh ξ (because the term e−iπσ̂

(1)
x σ̂(3)x = −  

is spin independent) and generate a pure three-body term with ampli-
tude πtanhξ. We note that maximally entangled states between three 
spins in this case require only 1 dB of squeezing (tanh ξ = 1

4
) (ref. 53).

We perform a limited characterization of this pure three-body 
interaction by measuring the output states for each of the eight distinct 
three-qubit input eigenstates, all in the z basis. The ideal population 
distributions of the expected states are equal weightings of the two 
complementary three-qubit states for each input state (Fig. 3a, wire 
frames). The measured spin population distributions are shown as 
solid bars in this figure (Supplementary Fig. 4 shows the numerical 
values), resulting in an average population fidelity of (95.8 ± 0.9)%, 
uncorrected for state preparation and measurement and single- 
qubit gate errors. We further study the coherence in this three- 
body mapping from two particular input states ||↓

(1)
z ↓(2)z ↓(3)z ⟩  and 

||↑
(1)
z ↑(2)z ↑(3)z ⟩ into the expected Greenberger–Horne–Zeilinger (GHZ) 

states 1
√2

(||↓
(1)
z ↓(2)z ↓(3)z ⟩ ± ||↑

(1)
z ↑(2)z ↑(3)z ⟩). We measure the entanglement 

of these particular GHZ states using the parity fringe witness obser-
vable62 (Fig. 3b), and extract state fidelities ℱ = (94.8 ± 1.5)%  and  
ℱ = (94.4 ± 1.9)% , respectively, uncorrected for state preparation  
and measurement and single-qubit gate errors. We compare these results 
with an independently calibrated error model (Supplementary Note 1), 
and find very good agreement. The leading types of error—uncorrelated 
bit-flip and phase-flip errors—are similar to the errors affecting two-qubit 
MS gates that are commonly used to create GHZ states62–64.

The sequence of displacement and squeezing operations can be 
realized at various laser intensities, providing continuous control over 
the values of ξ and Φ0 that can be implemented in equation (1). This 
control allows gates to be realized that are taken from a continuous set 
in the form U(ξ, Φ0) = exp(–iΦ0Heff) and are equivalent to the unitary 
evolution generated by a unitless, effective spin Hamiltonian 
Heff(ξ) = Φ/Φ0 setting ℏ = 1. This equivalence allows the application of 
gates that can simulate the evolution of spins by the same effective 
Hamiltonian Heff but for different values of Φ0 using a single sequence 
of displacement and squeezing operations, and scaling the amplitude 
of the beams that displace the edge ions. We demonstrate the evolution 
by the effective Hamiltonian associated with equation (1) for ξ = 0.23 

(calculated from equation (6)) and for the initial state ||↓
(1)
z ↓(2)z ↓(3)z ⟩ , 

presenting the magnetization ⟨σ̂(n)z ⟩ of each spin (Fig. 4). The observed 
spin evolution manifests interference effects owing to the interplay 
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Fig. 2 | Quantum phase gates. a, MS phase gate between ion numbers 1 and 3 
using displacement operations of one phonon mode using Milburn’s scheme49 
(Fig. 1a). The phase-space area of the enclosed rectangular contour Φ0 controls 
the spin evolution, jointly flipping the initial state ||↓

(1)
z ↓(3)z ⟩ into the state ||↑

(1)
z ↑(3)z ⟩.  

Here D(n)q (α) and D(n)p (α) denote the momentum and position displacement 
operations, respectively, applied on the nth ion. b,c, Interspersing spin-
dependent squeezing operations S(2)(±ξ) on ion number 2 in between 
displacement stages along the p coordinate scales the accumulated phase-space 
area Φ conditioned on the state of that spin (equation (1)). In a–c, the phonon 

wavepacket is brought back to its original state at the end of the gate operation to 
erase the spin–phonon correlations developed during the gate. Measured data 
(circles) and centre of the error bars are presented as mean values, bars represent 
1σ binomial uncertainties, solid line in a is a fit to a sine-squared function and 
dot–dash lines in b and c are the analytically calculated unitary evolution for the 
system parameters estimated independently. In a and c (b), each data point is 
derived from 400 (200) measurements. The applied experimental sequences are 
presented in Extended Data Fig. 1a,b.
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between the two- and three-body terms in the effective Hamiltonian, 
and is in good agreement with the analytically calculated evolution 
(Fig. 4, dot–dash lines).

We extend this technique to generate an effective Hamiltonian in 
a four-ion chain. As in the three-ion gate, we act on two edge ions with 
displacement operations, whereas the squeezing is simultaneously 
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Fig. 3 | Characterization of a three-body interaction gate. a, Truth table of a 
three-body gate XXX( π

4
) = exp(−i π

4
σ̂(1)x σ̂(2)x σ̂(3)x ) generated by a sequence of 

displacement and squeezing operations. The input and output spin states are 
along the z basis. Each input state is ideally mapped into a pair of output states 
(wire frames), and the raw measurements are shown as the solid bars. The 
measured populations of these target states are (95.8 ± 0.9)%, averaged over the 
eight measured configurations. b, Characterization of the parity fringe witness 
observable obtained by the gate. We measure the parity fringe of the output GHZ 

state for the two initial states ||↓
(1)
z ↓(2)z ↓(3)z ⟩ (light blue) and ||↑

(1)
z ↑(2)z ↑(3)z ⟩ (red) with 

a fitted amplitude of 0.932 ± 0.015 for the two states. The extracted GHZ fidelities 
for this operation for the two states are ℱ = (94.8± 1.5)% and ℱ = (94.4± 1.9)% .  
Data and centre of the error bars are presented as mean values, bars represent 1σ 
binomial uncertainties and each data point is derived from 300 measurements. 
The solid lines are fitted sine functions. In b, the operation Rθ(π/2) denotes 
single-qubit rotations by azimuthal angle θ and polar angle π/2 on the Bloch 
sphere. The measured values are uncorrected for errors in state preparation, 
measurement and single-qubit rotations.
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Fig. 4 | Evolution by effective Hamiltonians with three- and four-body 

interactions. a, Spin magnetization ⟨σ̂(n)z ⟩ under displacement and squeezing 
operations (Extended Data Fig. 1b) shown as a function of Φ0 for the initial state 
||↓
(1)
z ↓(2)z ↓(3)z ⟩. Mathematically, this dynamics is equivalent to the evolution 

generated by the effective Hamiltonian Heff = Φ/Φ0 for Φ in equation (1). The 
effective Hamiltonian comprises two- and three-body terms with magnitudes 
c2 = 1.03 and c3 = 0.23, as illustrated via the links connecting the different spins. 
Here Φ0 has the role of the effective evolution time (in units of ℏ = 1) and is 
controlled by the amplitude of the Raman beams (described in the main text).  
b, Evolution of four spins by the displacement and squeezing operations 

(Extended Data Fig. 1c) for the initial state ||↑
(1)
z ↑(2)z ↓(3)z ↓(4)z ⟩. The evolution here is 

equivalent to the one generated by an effective Hamiltonian Heff = Φ/Φ0 for Φ in 
equation (2) simultaneously containing two-, three- and four-body terms with 
amplitudes c2 = 1.10, c3a = 0.36, c3b = 0.31 and c4 = 0.10. The dot–dash lines are  
the analytically calculated magnetizations for the same initial states where 
amplitudes c are determined from the calculated squeezing parameters. Data 
and centre of the error bars are presented as mean values, bars represent 1σ 
binomial uncertainties and each data point is derived from 400 measurements.  
Also, Φ0 is experimentally controlled via scaling the amplitude of the laser  
beams acting on the edge ions but fixing all the other sequence parameters.
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performed on the two middle ions, with squeezing parameters ξ and ζ 
shown in Extended Data Fig. 1c. Unlike the displacement operation that 
is linear in the spin operators, the total scaling factor of the phonons 
eξσ̂

(2)
x eζσ̂

(3)
x  is multiplicative in the spin operators, owing to the nonlinear 

nature of the squeezing operation. Therefore, we realize the geometric 
phase of the scaled rectangle as

Φ = Φ0(c2σ̂(1)x σ̂
(4)
x + c3aσ̂(1)x σ̂

(2)
x σ̂(4)x

+c3bσ̂(1)x σ̂
(3)
x σ̂(4)x + c4σ̂(1)x σ̂

(2)
x σ̂(3)x σ̂(4)x ),

(2)

which is equivalent to the effective evolution by Hamiltonian in the 
form of Heff(ξ, ζ ) = Φ/Φ0. The effective Hamiltonian contains two-, three- 
and four-body terms whose relative amplitudes are given by c2 = cosh 
ξ cosh ζ, c3a = sinh ξ cosh ζ, c3b = cosh ξ sinh ζ and c4 = sinh ξ sinh ζ.  
In Fig. 4b, we demonstrate the evolution by this effective Hamiltonian 
for the initial state ||↑

(1)
z ↑(2)z ↓(3)z ↓(4)z ⟩  and the applied values ξ = 0.34  

and ζ = 0.29 (as calculated from equation (6)), following the calibration 
of Φ0. The evolution in this case manifests interference between the  
four different terms in the Hamiltonian, and is in good agreement  
with the theoretically calculated evolution (Fig. 4b, dot–dash lines).

In summary, we demonstrate a technique to realize native entan-
gling operations comprising higher-order interactions between the 
spins of trapped ions. Our approach allows engineering new classes 
of programmable native gates and Hamiltonians using current 
trapped-ion hardware and requiring only minor alternations in the 
optical force spectrum and modest levels of squeezing.

It is interesting to compare this approach with the alternative 
necessary resources of a digital quantum computer using just two-body 
interactions (and neglecting the cost of single-qubit operations). The 
approach presented here allows the preparation of effective Hamilto-
nians comprising families of polynomials of Pauli strings in the x basis 
whose order is up to the length N of the chain. Owing to the collective 
nature of the phonon modes that are used as a quantum bus, these 
polynomials can feature dense connectivity, resulting in many different 
and non-local interaction terms. This scheme requires a fixed amount 
of displacement operations (equivalent to several two-qubit gates) 
and additional squeezing operations that carry a run-time overhead 
whose relative duration for a fixed optical power grows linearly in N 
(ref. 53). Given only two-qubit interactions, the construction of a single 
Pauli string of order n > 2 can be realized with 2n two-qubit gates or a 
couple of multiqubit MS gates1,12,62–64. A general spin polynomial with 
commuting terms can be constructed with the sequential application of  
∑N
n=2 (

N
n
) 2n two-qubit gates, which grows exponentially in N (ref. 31). 

Although some polynomials can be efficiently constructed with two- or 
multiqubit MS gates based on two-qubit interactions (where the latter 
features potential quadratic speedup compared with the former63–65), 
the dramatically different scaling of our approach suggests that the 
operations presented here can potentially speed up operations in a 
quantum processor.

The speed of operations in long ion chains is of great importance 
because at long evolution times, the gate fidelities are affected by 
correlated noise that originates from motional heating, requiring 
in-sequence cooling57. We note that this gate scheme may enjoy a fur-
ther improvement in speed by using light ions (for example, 9Be+) 
with a high Lamb–Dicke parameter η. This is because the speed of 
spin-dependent squeezing operations scales quadratically with η, 
whereas spin-dependent displacement operations in conventional 
gates scale only linearly with η.

This demonstration can be extended to a variety of different 
sequences that can improve the robustness of the operations and/or 
construct different sets of spin-entangling operations. For example, 
the rectangular-shaped loop can be alternatively shaped into other 
trajectories in the phase space that would render the operation more 
robust to noise (for example, to frequency drifts of the oscillator) 

using pulse-shaping techniques52,66–69. Furthermore, pulse shaping of 
the squeezing pulses enables control over the coupling between spins 
and all the motional modes, despite the density of the second-sideband 
spectrum, enabling extension of the technique to longer ion chains54.

Although the displacement and squeezing operations in this 
demonstration were sequentially executed, on-resonance, simultane-
ous53 and/or off-resonance operations54 can natively realize additional 
classes of quantum gates and spin Hamiltonians comprising high-order 
interactions, including pure N-body terms with N ≥ 4. Other gates 
with many-body interactions are generally accompanied by other 
many-body terms of lower order, as demonstrated above (Fig. 4b). The 
full power and expression of such interactions in trapped-ion quantum 
computers may, thus, benefit from machine learning approaches70 to 
deploy families of such interactions for speeding up and improving 
the performance of general quantum circuits. It could be particularly 
useful in variational quantum algorithms71–73 that can expand the native 
set of gates.
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Methods
Native ion–phonon interactions
We control the displacement and squeezing operations of the ions 
using pairs of optical Raman beams (Supplementary Fig. 1 shows the 
schematic). The beam that globally addresses the chain traverses an 
acousto-optical modulator that is simultaneously driven with two RF 
signals A+sin(ω+t + ϕ+(t)) and A–sin(ω–t + ϕ–(t)) that split and shift  
its optical frequency into two distinct tones. We simultaneously  
drive both red- and blue-sideband transitions to generate displacement 
or squeezing operations, and set their amplitudes A+ and A− to be  
nearly equal. Control over the beatnote frequency, 1

2
(ω+ − ω−), of the 

tones with respect to the carrier transition enables selection of the 
driven sidebands transitions; here we address the lowest-frequency 
radial mode, denoted as mode number 1 with frequency ω1, by tuning 
the relative detuning ∆ = 1

2
(ω+ − ω−) − ω1  to be on resonance (Δ = 0). 

We modulate the amplitude of the individually addressing beams  
to control the amplitude of the displacement of the target zig-zag mode 
as well as to suppress the displacements of all the other off-resonant 
modes. The amplitude-shaped waveform is based on the optimal  
control technique54 using a sinusoidal basis (Supplementary Fig. 2 
shows an example for a single displacement stage of a three-ion chain).

The spin-dependent displacement operator on the nth ion as a 
function of time is given by53

D(n)(α(t)) = exp (σ̂(n)φ̄ (α(t) ̂a† − α∗(t) ̂a)) , (3)

where ̂a = ̂q + i ̂p  denotes the bosonic phonon annihilation operator  
of the target lowest-frequency radial mode. The time-dependent  
displacement is given by

α(t) = 1
2iηn1∫

t

0
dτei(Δτ+δφ)Ωn(τ). (4)

Here Ωn(t) is the Rabi frequency that can be varied up to about 1 MHz, 
as we independently calibrate experimentally using single-qubit 
rotations acting on the carrier transition. The Lamb–Dicke param-
eters ηn1 = 0.08bn1 characterizing the coupling of the zig-zag motional 
mode to the nth spin include mode participation factors for the zig-zag 
mode (number 1) of bn1 = (0.41, 0.82, 0.41) for the three-ion chain and 
bn1 = (0.21, –0.67, 0.67, –0.21) for the four-ion chain, assuming a quad-
ratic trapping potential along the chain axis. The applied potentials 
give an average spacing of about 3.7 μm between the ions to maximize 
coupling with the equidistant fixed-spacing optical Raman beams, for 
which ω1 = 2.817 MHz for the three-ion chain and ω1 = 2.781 MHz for 
the four-ion chain, where the radial centre-of-mass frequency in both 
configurations is 3.030 MHz.

The relative phase between the two RF tones δφ = (ϕ+ − ϕ−)/2  
controls the orientation of displacement in the phase space, and the 
common phase φ̄ = (ϕ+ + ϕ− − π)/2  determines the orientation of  
the spin operator on the Bloch sphere σ̂(n)φ̄ = cos φ̄nσ̂

(n)
x + sin φ̄nσ̂

(n)
y . We 

nominally tune the phase φ̄n = 0 to render the operator σ̂(n)φ̄ = σ̂(n)x  as 
considered in the main text, and tune Δ = 0 to resonantly drive the 
lowest-frequency phonon mode and generate the edges of the 
rectangular-shaped trajectories whose orientation depends on the 
relative phase; motion along the q (−q) coordinate (denoted as Dq in 
Extended Data Fig. 1) is realized by setting the relative phase at δφ = 0 
(δφ = π) and motion along the p (−p) coordinate (denoted as Dp  
in Extended Data Fig. 1) is realized by setting δφ = π/2 (δφ = 3π/2). The 
duration of a displacement pulse is 26 μs in the three-ion configuration 
and 44 μs in the four-ion configuration.

We apply squeezing operations on the zig-zag mode by tuning the 
relative frequency of the tones at twice the motional frequency, 
∆ = 1

2
(ω+ − ω−) − 2ω1 = 0. Here we use an unmodulated square-shaped 

pulse (with about 1 μs for the rise time and fall time of the edges), and 

we find that the expected coupling to the other modes is small. This 
acts on the nth ion to squeeze the motion according to the operator

S(n)̂ξ (t) = e
1
2
σ̂(n)ϕ̄ ξ(t)( ̂a2− ̂a†2), (5)

where the projection of the spin operator is controlled by the common 
phase of the two tones, ϕ̄ = π + (ϕ+ + ϕ−)/2. We nominally tune ϕ̄ = 0 
so that σ̂(n)ϕ̄ = σ̂(n)x . The squeezing amplitude and its orientation are, thus, 
given by the complex parameter

ξ(t) = 1
2η

2
n1∫

t

0
dτΩn(τ)ei(Δτ+δϕ). (6)

We tune Δ = 0 to resonantly drive the zig-zag mode and control 
the direction in the motional phase space that is squeezed using 
δϕ = (ϕ+ − ϕ−)/2. The direction of squeezing in the experiment is aligned 
with the q coordinate, with squeezing (anti-squeezing) correspond-
ing to δϕ = 0(π). The duration of a squeezing pulse is about 29 μs in  
the three-ion configuration and about 49 μs in the four-ion configu-
ration. In particular, the control over the phases δφ and δϕ (deter-
mining the direction of displacement and squeezing operations, 
respectively) depends only on the relative phases ϕ+ − ϕ− of the  
two RF signals that are fed into one of the acousto-optical modula-
tors, and do not depend on the relative optical phases of the Raman  
beams.

We implement single-qubit rotations using a composite pulse 
sequence (SK1 sequence74) to implement the unitary operation

R(n)θ ( χ) = exp (−i χ2 σ̂
(n)
θ ) (7)

on the nth spin by driving a single tone of the global beam (A− = 0) on 
resonance with the carrier transition such that θ = ϕ+. Each single-qubit 
gate takes 12.7 μs. We use these single-qubit operations for the prepara-
tion of the initial state along the x axis and for echo pulses R(n)0 (±π)   
that commute with the spin operators in the circuit and suppressing 
effects of small uncompensated light shifts.

Experimental calibration
We verify the value of φ̄ = 0  by running a short sequence 
R(n)θ ( π

2
)D(n)(α)R(n)θ (− π

2
) on the target spin initially in state |↓z〉 and for 

variable rotation axis θ. The angle θ0 for which the spin-flip probability 
is minimal gives φ̄ = θ0 +

π
2

. Similarly, we verify the value of ϕ̄ = 0 by 

running a short sequence R(n)θ ( π
2
) S(n)ξ R(n)θ (− π

2
) on the target spin initially 

in state |↓z〉, and find that φ̄ = θ0.
We verify the relative orientation of the displacement and squeez-

ing operations, δφ with respect to δϕ, by measuring the spin-flip prob-
ability of the edge ions for the squeezed rectangle phase gate by the 
sequence in Extended Data Fig. 1b for the initial state ||↓

(1)
z ↓(2)x ↓(3)z ⟩ and 

the nominal value of δφ = 0 but for different values of δϕ. For small 
displacement and squeezing (Φ0eξ <

π
2

), the spin-flip probability  
is minimized for δϕ = 0 and is given by pa = sin2(e–ξΦ0), whereas it  
is maximized for δϕ = π and is given pb = sin2(e–ξΦ0). The measured 
values of pa and pb can determine Φ0 and ξ.

We compensate for light-induced shifts generated during the  
displacement and squeezing operations by tuning the relative  
amplitude imbalance of the two tones ∣A+ − A−∣/∣A+ + A−∣ at the level of 
about 1%. The imbalance applied during the squeezing and displace-
ment operations is independently tuned to account for different shifts, 
for example, from residual coupling to Zeeman states outside of the 
space of the spin qubits and detuned by ±4.2 MHz from the carrier 
spin-flip transition. The orientation of the magnetic field is also tuned 
to suppress the Zeeman transition amplitudes.
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We routinely calibrate for drifts in the motional frequency of  
the oscillator by driving sequences that combine D(n)(α)D(n)(−α)  
and scanning for the motional frequency Δ (Supplementary Fig. 3a). 
Here we implement D(n)(−α) by applying the pulse D(n)(α) and  
shifting the motional phase by δφ→δφ + π, which manifests the inverse 
of the displacement operation only if the driving is resonant (Δ = 0). 
When the displacement is driven off-resonantly, the operation is not 
reversed and residual coupling between the spin and phonons leads 
to a non-zero spin-flip probability, which allows the calibration of the 
motional frequency to better than 100 Hz. Similarly, the operations 
S(n)ξ S(n)−ξ , where S(n)−ξ  are realized by advancing δϕ by π, give a similar 
dependence on motional frequency. We generated a composite 
sequence that uses these operations and allows for an efficient check 
of the motional frequency (Supplementary Fig. 3b). Additional details 
and characterizations of our experimental setup can be found 
elsewhere3,56,59.

Data availability
Source data are provided with this paper. Other data that support the 
findings of this study are available from the corresponding authors 
on reasonable request.
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Extended Data Fig. 1 | Experimental sequences. a, Sequence of displacement 
operations acting on the two edge ions and composing the MS interaction, 
enclosing a closed rectangular loop in phase-space and generating the evolution 
in Fig. 2a. b, Superimposing spin-dependent squeezing operations on the  
second spin scales the displacement generated by the third spin by a factor 
exp(σ̂(2)x ξ) and consequently also the enclosed phase-space area. This sequence 
was applied to the configurations in Fig. 2b–c and in Fig. 3 and Fig. 4a.  
c, Displacement of the edge two spins and simultaneous squeezing of the  
middle spins for the four ions configuration presented in Fig. 4b. The 
simultaneous squeezing scales the displacement generated by the fourth  

spin by a spin-dependent factor exp(σ̂(2)x ξ+ σ̂(3)x ζ ) as seen from the identity 

S(m)(−ξ)D(n)p (±α)S(m)(ξ) = D(n)p (±eσ̂
(m)
x ξα). The operators D(n)p (±α) and D(n)q (±α) 

denote displacement of the target phonon mode via the nth ion by ± α along the  
p and q coordinates respectively. S(m)( ± ξ) denotes the squeezing operator  

acting on ion m and R(n)θ (±π) denotes short single-qubit π-pulses acting on  

the n th ion, which commute with the spin-dependent displacement operations 
and which correct for slowly-varying uncompensated Stark shifts without 
altering the target state. See Methods for further details.
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